NORECS / Support / References Search FAQ Order and Enquiry Contact Language
Published references

These publications have a reference to ProboStat™ or other NORECS products

All   1-25   26-50   51-75   76-100   101-125   126-150   151-175   176-200   201-225   226-250   251-275   276-300   301-325   326-350   351-375   376-400   401-425   426-450   451-475   476-500   501-525   526-550   551-575   576-600   601-625   626-  

Detailed characterization of oxide-ion and proton transport numbers in Sr–Ti layered perovskites using an improved electromotive force method

ID=670
Authors Yutaro Yagi, Isao Kagomiya & Ken-ichi Kakimoto
Source
Journal of Materials Research
Time of Publication: 2022
Abstract Numerous Sr–Ti-based layered perovskite-structured compounds exhibit protonic conductivity. In a previous study, we found that a new Sr2Ti0.95Al0.05O4−δ (STA05) layered perovskite also shows evidence of protonic conductivity. However, Sr–Ti-based layered perovskites are also potential oxide-ion conductors. Detailed transport numbers for both protons and oxide-ions in Sr–Ti-based layered perovskites remain unclear. To solve this problem, we here propose an improved approach based on electromotive force (emf) measurements to account for the contributions of thermal emf and polarization to the total conductivity. In the first step of this study, the conditions for investigating actual emfs were evaluated using measurements of yttria-stabilized zirconia as a typical oxide-ion conductor. The optimized emf technique was subsequently used to evaluate the transport numbers of STA05, which was found to exhibit no oxide-ion transport. Thus, STA05 is concluded to be a mixed proton and electron conductor.
Remark Link

Impedance spectroscopy study of Au electrodes on Gd-doped CeO2 (GDC) – Molten Li2CO3+Na2CO3 (LNC) composite electrolytes

ID=669
Authors Vijayan Sobhana Dilimon, Ragnar Strandbakke, Truls Norby
Source
Journal of Power Sources
Volume: 522, Pages: 230986
Time of Publication: 2022
Abstract We herein report an impedance spectroscopy study of Au electrodes on Gd-doped CeO2 (GDC) – molten Li2CO3+Na2CO3 (LNC) composite electrolytes in O2 and O2+CO2 atmospheres. Complementary measurements of Au on GDC alone are provided for supporting insight. We find that the adsorption of CO2 on GDC in O2+CO2 atmospheres effectively blocks oxygen adsorption and severely slows oxygen reduction kinetics. The conductivity of the composite is dominated by the GDC phase in the solid-solid temperature region, while the LNC phase dominates above its melting point, and no further enhancement e.g. by interfacial effects are found. The incorporation of LNC melt into GDC results in a significant reduction in the polarisation resistance of Au electrodes in O2 atmospheres, as the melt mediates the reaction by a peroxide mechanism. In O2+CO2 atmospheres, however, the polarisation resistance of Au electrodes on GDC-LNC membranes is significantly higher, higher even than that on GDC. This we assign again to the blocking adsorption of CO2 (or carbonate) on the surfaces of ceria and the sluggish transport and reactions now mediated by carbonate-carried oxide species (CO42−) instead of peroxide species.
Keywords Molten carbonate fuel cells; MCFC; CeO2; Gd-doped; GDC; GDC-Molten carbonate composite electrolyte; Oxygen electrode; Mechanism
Remark Link

Lanthanum strontium cobaltite as interconnect in oxide thermoelectric generators

ID=668
Authors Reshma K.Madathil, TrulsNorby
Source
Solid State Sciences
Volume: 124, Pages: 106801
Time of Publication: 2022
Abstract Issues related to use of metallic interconnects in oxide thermoelectric generators (TEGs) need to be addressed to secure performance and durability. Metal interconnects suffer from high cost of noble metals or chemical instability and contact resistance of non-noble metals, arising from oxidation, evaporation, and delamination in the oxidising conditions of ambient air at high operating temperatures. This work introduces the use of a stable and highly conducting ceramic oxide, in our case p-type lanthanum strontium cobaltite (La0.6Sr0.4CoO3, LSC) as interconnect. We verified the thermochemical stability of LSC in contact with p-type Ni0.98Li0.02O (Li–NiO) and n-type Zn0.98Al0.02O (Al–ZnO) and examined the electrical characteristics. An area specific contact resistance (ASRc) of ∼1800 Ω cm2 for a direct p-n junction was reduced to ∼400 mΩ cm2 for a p-LSC-n junction at a temperature of 300 °C, validating the concept. The use of a screen-printed LSC/Al–ZnO composite as a thin interconnect layer was found to decrease the contact resistance of the junction further to ∼260 mΩ cm2 at 300 °C, attributed to increased effective area of the LSC/Al–ZnO p-n junction.
Keywords Thermoelectric generator; All-oxide; Thermoelectric materials; Oxides; Interconnect; Oxide; p-n-junction; Ohmic; LaCoO3; Sr-substituted; La0.6Sr0.4CoO3
Remark Link

Oxide Ion and Proton Conductivity in a Family of Highly Oxygen-Deficient Perovskite Derivatives

ID=667
Authors Chloe A. Fuller, Douglas A. Blom, Thomas Vogt, Ivana Radosavljevic Evans, and John S. O. Evans
Source
J. Am. Chem. Soc.
Volume: 144, Issue: 1, Pages: 615–624
Time of Publication: 2022
Abstract Functional oxides showing high ionic conductivity have many important technological applications. We report oxide ion and proton conductivity in a family of perovskite-related compounds of the general formula A3OhTd2O7.5, where Oh is an octahedrally coordinated metal ion and Td is a tetrahedrally coordinated metal ion. The high tetrahedral content in these ABO2.5 compositions relative to that in the perovskite ABO3 or brownmillerite A2B2O5 structures leads to tetrahedra with only three of their four vertices connected in the polyhedral framework, imparting a potential low-energy mechanism for O2– migration. The low- and high-temperature average and local structures of Ba3YGa2O7 (P2/c, a = 7.94820(5) Å, b = 5.96986(4) Å, c = 18.4641(1) Å, and β = 91.2927(5) ° at 22 °C) were determined by Rietveld and neutron pair distribution function (PDF) analysis, and a phase transition to a high-temperature P1121/a structure (a = 12.0602(1) Å, b = 9.8282(2) Å, c = 8.04982(6) Å, and γ = 107.844(3)° at 1000 °C) involving the migration of O2– ions was identified. Ionic conductivities of Ba3YGa2O7.5 and compositions substituted to introduce additional oxide vacancies and interstitials are reported. Most phases show proton conductivity at lower temperatures and oxide ion conductivity at high temperatures, with Ba3YGa2O7.5 retaining proton conductivity at high temperatures. Ba2.9La0.1YGa2O7.55 and Ba3YGa1.9Ti0.1O7.55 appear to be dominant oxide ion conductors, with conductivities an order of magnitude higher than that of the parent compound.
Remark https://doi.org/10.1021/jacs.1c11966
Link

Advanced metal oxide infiltrated electrodes for boosting the performance of solid oxide cells

ID=666
Authors Alodia Orera, Alejandro Betato, Jorge Silva-Trevino, Angel Larrea and Miguel A. Laguna-Bercero
Source
J. Mater. Chem. A
Time of Publication: 2021
Abstract An efficient way for boosting the performance of solid oxide electrodes is the infiltration of metallic nanoparticles into both electrodes. In this work we will focus on improving the performance of standard lanthanum strontium manganite oxygen electrodes, by the addition of different metal oxide nanoparticles. First studies will be performed using cerium oxide nanoparticles, as this is the classic oxide already proposed in the literature. Other novel metal oxides such as praseodymium or manganese oxide will be explored, as studies in the literature for these two metal oxides are very scarce. The effect of metal oxide infiltration into LSM/YSZ oxygen electrodes will be studied in both symmetrical cells and complete microtubular cells using conventional fuel electrodes (NiO-YSZ) and electrolytes (YSZ). The obtained current densities in both fuel cell and electrolysis modes are significantly enhanced in comparison with other results in the literature for microtubular configuration.
Remark DOI: 10.1039/D1TA07902F
Link

Reaction Sintering of Ca3Co4O9 with BiCuSeO Nanosheets for High-Temperature Thermoelectric Composites

ID=665
Authors Richard Hinterding, Desiree Rieks, Patrick A. Kissling, Lukas Steinbach, Nadja C. Bigall & Armin Feldhoff
Source
Journal of Electronic Materials volume
Volume: 51, Pages: 532–542
Time of Publication: 2022
Abstract Ceramic composites composed of oxide materials have been synthesized by reaction sintering of Ca3Co4O9 with BiCuSeO nanosheets. In situ x-ray diffraction and thermogravimetric analyses of the compound powders were conducted to understand the phase transformations during heating up to 1173 K. Further thermogravimetric analyses investigated the thermal stability of the composites and the completion of reaction sintering. The microstructure of the formed phases after reaction sintering and the composition of the composites were investigated for varying mixtures. Depending on the amount of BiCuSeO used, the phases present and their composition differed, having a significant impact on the thermoelectric properties. The increase of the electrical conductivity at a simultaneously high Seebeck coefficient resulted in a large power factor of 5.4 μW cm−1 K−2, more than twice that of pristine Ca3Co4O9.
Remark Link

High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/La0.8Sr0.2Ga0.8Mg0.2O3−δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte

ID=664
Authors Sea-Fue Wang, Hsi-Chuan Lu, Yung-Fu Hsu, Piotr Jasinski
Source
International Journal of Hydrogen Energy
Volume: 47, Issue: 8, Pages: 5429-5438
Time of Publication: 2022
Abstract In this study, intermediate-temperature solid oxide fuel cells (IT-SOFCs) with a nine-layer structure are constructed via a simple method based on the cost-effective tape casting-screen printing-co-firing process with the structure composed of a NiO-based four-layer anode, a Sm0.2Ce0·8O2-δ(SDC)/La0·8Sr0.2Ga0.8Mg0·2O3−δ (LSGM)/SDC tri-layer electrolyte, and an La0·6Sr0·4Co0·2Fe0·8O3-δ (LSCF)-based bi-layer cathode. The resultant SDC (4.14 μm)/LSGM (1.47 μm)/SDC (4.14 μm) tri-layer electrolyte exhibits good continuity and a highly dense structure. The Ro and Rp values of the single cell are observed to be 0.15 and 0.08 Ω cm2 at 800 °C, respectively, and the MPD of the cell is 1.08 Wcm-2. The high MPD of the cell appears to be associate with the significantly lower area-specific resistance and the reasonably high OCV. Compared to those with a similar electrolyte thickness reported in prior studies, the nine-layer anode-supported IT-SOFC with a tri-layer electrolyte developed by the study demonstrates superior cell properties.
Remark Link

Synthesis, structure and ionic conductivity of nanocrystalline Ce1−xLaxO2−δ as an electrolyte for intermediate temperature solid oxide fuel cells

ID=663
Authors Naeemakhtar Momin, J. Manjanna, Lawrence D’Souza, S.T. Aruna, S.Senthil Kumar
Source
Journal of Alloys and Compounds
Volume: 896, Pages: 163012
Time of Publication: 2022
Abstract La-doped CeO2 nanoparticles of composition Ce1−xLaxO2−δ (0 ≤ x ≤ 0.1) have been studied here as prospective electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). They were synthesized by auto-combustion method and the powder samples were calcined at 700 °C to get ultrafine nanocrystalline particles. They were characterized by XRD, Raman, FTIR, XPS, DRS, FESEM/EDX, particle size analyzer and ac-impedance techniques. Ionic conductivity was measured from 350 − 750 °C. The Ce0.90La0.1O2−δ (0.1 LDC) and Ce0.95La0.05O2−δ (0.05 LDC) showed a maximum conductivity of 8.89 × 10−3 and 8.32 × 10−3 S cm−1 at 700 °C, respectively. The σt of 0.1 LDC = 1.01 × 10−2 S cm−1 at 750 °C. The activation energy of 0.1 LDC and 0.05 LDC was found to be 0.70 eV and 0.87 eV, respectively. These values are higher than those reported for La-doped CeO2 in literature. The SOFC performance with 0.05 LDC as electrolyte showed open circuit voltage of 0.81 V and maximum power density of 41 mW cm−2 at 650 °C using hydrogen as fuel.
Remark Link

Unlocking bulk and surface oxygen transport properties of mixed oxide-ion and electron conducting membranes with combined oxygen permeation cell and oxygen probe method

ID=662
Authors Yongliang Zhang, Kevin Huang
Source
Journal of Membrane Science
Volume: 644, Pages: 120082
Time of Publication: 2022
Abstract Surface exchange kinetics and bulk diffusion of oxygen are of paramount importance to the activity of oxygen electrocatalysis and performance of electrochemical devices such as fuel cell, metal-air batteries, and oxygen separation membranes. Conventional approaches to obtaining these transport properties are often limited to single property under a specific non-operation related condition. Here we use a combined oxygen permeation cell and oxygen probe methodology to simultaneously attain rates of oxygen surface exchange and bulk conductivity/chemical diffusivity of three representative mixed oxide-ion and electron conductors, namely SrCo0.9Ta0.1O3-δ (SCT), La0.6Sr0.4CoO3-δ (LSC) and La0.6Sr0.4FeO3-δ (LSF), operated under a steady-state oxygen flux. The results explicitly show that SCT exhibit the highest oxide-ion conductivity/chemical diffusivity, fastest rates of surface oxygen exchange kinetics, thus promising to be the best oxygen electrocatalyst. We have also mapped out the distribution of oxygen chemical potential gradient across the membranes and applied B-transport number concept to illustrate the rate-limiting steps in the overall oxygen permeation process.
Remark Link

Improved thermoelectric properties in ceramic composites based on Ca3Co4O9 and Na2Ca2Nb4O13

ID=661
Authors R. Hinterding, M. Wolf, M. Jakob, O. Oeckler, A. Feldhoff
Source
Open Ceramics
Volume: 8, Pages: 100198
Time of Publication: 2021
Abstract The oxide materials Ca3Co4O9 and Na2Ca2Nb4O13 were combined in a new ceramic composite with promising synergistic thermoelectric properties. Both compounds show a plate-like crystal shape and similar aspect ratios but the matrix material Ca3Co4O9 with lateral sizes of less than 500 nm is about two orders of magnitude smaller. Uniaxial pressing of the mixed compound powders was used to produce porous ceramics after conventional sintering. Reactions between both compounds and their compositions were thoroughly investigated. In comparison to pure Ca3Co4O9, mixing with low amounts of Na2Ca2Nb4O13 proved to be beneficial for the overall thermoelectric properties. A maximum figure-of-merit of zT = 0.32 at 1073 K and therefore an improvement of about 19% was achieved by the ceramic composites.
Remark https://doi.org/10.1016/j.oceram.2021.100198
Link

Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators

ID=660
Authors Sophie Bresch, Björn Mieller, Paul Mrkwitschka, Ralf Moos, Torsten Rabe
Source
Time of Publication: 2021
Abstract Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulation material should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic composite material adapted for multilayer generators from calcium manganate and calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500°C), a sintering temperature of 900°C, and a high resistivity up to 800°C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases.
Remark https://doi.org/10.1111/jace.18235
Link

Electrical properties of yttria-stabilised hafnia ceramics

ID=659
Authors Meshari Alotaibi, Linhao Li and Anthony R Wes
Source
Phys. Chem. Chem. Phys.
Volume: 23, Pages: 25951
Time of Publication: 2021
Abstract Cubic, yttria-stabilised hafnia, YSH, ceramics of general formula, YxHf1xO2x/2: x = 0.15, 0.30 and 0.45 were sintered at 1650–1750 1C and characterised by impedance spectroscopy. All three compositions are primarily oxide ion conductors with a small amount of p-type conductivity that depends on atmospheric conditions and appears to increase with x. The electronic conductivity is attributed to hole location on under-bonded oxide ions and the absorption of oxygen molecules by oxygen vacancies, both of which occur on substitution of Hf4+ by Y3+. Composition x = 0.15 has the highest total conductivity and shows curvature in the Arrhenius plot at high temperatures, similar to that of the most conductive yttria-stabilised zirconia.
Remark Link

Electrochemical Performance of SrWO4 Electrolyte for SOFC

ID=658
Authors Ahmed Afif, Nikdalila Radenahmad, Juliana Zaini, Abdalla Mohamed Abdalla, Seikh Mohammad Habibur Rahman, Quentin Hoon Nam Cheok, Abul Kalam Azad
Source
The International Journal of Integrated Engineering
Volume: 13, Issue: 1, Pages: 74-80
Time of Publication: 2021
Abstract cheelite structured SrWO4 material was synthesized by the solid-state sintering method and studied with respect to phase stability and ionic conductivity under condition of technological relevance for SOFC applications. The resulting compound was crystallized in the single phase of tetragonal scheelite structure with the space group of I41/a. Room temperature X-ray diffraction and subsequent Rietveld analysis confirms its symmetry, space group and structural parameters. Analysis by SEM illustrated a highly dense structure. SrWO4 sample shows lower conductivity compared to the raditional BCZY perovskite structured materials. SrWO4 sample exhibited an ionic conductivity of 1.93 × 10−6 S cm-¹ at 1000°C in dry Ar condition. Since this scheelite type compound demonstrated significant conductivity and a dense microstructure, it could serve in SOFC as a mixed ion-conducting electrolyte.
Remark Link

Electrical properties and charge compensation mechanisms of Cr-doped rutile, TiO2

ID=657
Authors Yun Dang, Xin Li Phuah, Han Wang, Bo Yang, Haiyan Wang and Anthony R. West
Source
Phys. Chem. Chem. Phys.
Volume: 23, Pages: 22133-22146
Time of Publication: 2021
Remark Link

Protonic Transport Properties of Perovskite Heterostructures A Thin Film Study

ID=656
Author Erik E. P. Alsgaard
Source
Time of Publication: 2021
Remark Master Thesis Materials Science for Energy and Nanotechnology
Link

Expanded Chemistry and Proton Conductivity in Vanadium-Substituted Variants of γ-Ba4Nb2O9

ID=655
Authors Alex J. Brown, Bettina Schwaighofer, Maxim Avdeev, Bernt Johannessen, Ivana Radosavljevic Evans, and Chris D. Ling
Source
Chem. Mater.
Volume: 33, Issue: 18, Pages: 7475–7483
Time of Publication: 2021
Abstract We have substantially expanded the chemical phase space of the hitherto unique γ-Ba4Nb2O9 type structure by designing and synthesizing stoichiometric ordered analogues γ-Ba4V1/3Ta5/3O9 and γ-Ba4V1/3Nb5/3O9 and exploring the solid-solution series γ-Ba4VxTa2–xO9 and γ-Ba4VxNb2–xO9. Undoped Ba4Ta2O9 forms a 6H-perovskite type phase, but with sufficient V doping the γ-type phase is thermodynamically preferred and possibly more stable than γ-Ba4Nb2O9, forming at a 200 °C lower synthesis temperature. This is explained by the fact that Nb5+ ions in γ-Ba4Nb2O9 simultaneously occupy 4-, 5-, and 6-coordinate sites in the oxide sublattice, which is less stable than allowing smaller V5+ to occupy the former two and larger Ta5+ to occupy the latter. The x = 1/3 phase γ-Ba4V1/3Ta5/3O9 shows greatly improved ionic conduction compared to the x = 0 phase 6H-Ba4Ta2O9. We characterized the structures of the new phases using a combination of X-ray and neutron powder diffraction. All compositions hydrate rapidly and extensively (up to 1/3 H2O per formula unit) in ambient conditions, like the parent γ-Ba4Nb2O9 phase. At lower temperatures, the ionic conduction is predominately protonic, while at higher temperatures it is likely other charge carriers make increasing contributions.
Remark https://doi.org/10.1021/acs.chemmater.1c02340
Link

Electrical transport in a molten-solid V2O5–ZrV2O7 composite

ID=654
Authors Linn Katinka Emhjellen, Ragnar Strandbakke and Reidar Haugsrud
Source
J. Mater. Chem. A
Volume: 9, Pages: 18537-18545
Time of Publication: 2021
Abstract Molten-solid composite oxides are candidates as oxygen transport membranes (OTMs) at intermediate temperatures (500–700 °C). Effects of the constituent phases and interphases on surface reactions and transport processes in these composites are elusive. Here we contribute fundamental insight to such materials systems, applying electrochemical impedance spectroscopy (EIS) and electromotive force (emf) measurements to investigate the electrical conductivity characteristics of a 30 mol% V2O5–ZrV2O7 composite with a eutectic melting point at ∼670 °C. When V2O5 melts and increases the V2O5 volume percolation, the electrical conductivity increases by a factor of 10 and the activation energy increases from 0.21 to ∼0.7 eV. The oxygen red-ox reaction at the surface changes from being rate limited by charge transfer processes to mass transfer processes as a consequence of fast oxygen exchange in molten V2O5 as compared to the all-solid composite. These effects coincide with the ionic transport number rising from essentially zero to ∼0.4, reflecting a significant increase in the relative oxide ion conductivity. Oxygen permeation across a 30 mol% V2O5–ZrV2O7 membrane was estimated to be in the same order as for several dual-phase membranes, but one magnitude lower than for single-phase mixed conducting membranes at intermediate temperatures.
Remark DOI: 10.1039/D1TA03750A
Link

Evaluation of Materials for Use in Open-Cycle Magnetohydrodynamic Power Generation

ID=653
Author Michael S. Bowen
Source
Time of Publication: 2021
Remark Michael S. Bowen for the degree of Master of Science in Mechanical Engineering
Link

Anode-supported solid oxide fuel cells with multilayer LSC/CGO/LSC cathode

ID=652
Authors A.A. Solovyev, K.A. Kuterbekov, S.A. Nurkenov, A.S. Nygymanova, A.V. Shipilova, E.A. Smolyanskiy, S.V. Rabotkin., I.V. Ionov
Source
Fuel Cells
Volume: 21, Issue: 4, Pages: 408-412
Time of Publication: 2021
Abstract The multilayer La0.6Sr0.4CoO3/Ce0.9Gd0.1O2/La0.6Sr0.4CoO3 (LSC/CGO/LSC) thin film cathode of the solid oxide fuel cell (SOFC) with the different thickness of the LSC and CGO layers are obtained by magnetron sputtering. Cathodes are deposited onto the NiO/8YSZ anode-supported 8YSZ/CGO bilayer electrolyte. The influence of the deposited multilayer cathode on the SOFC performance is investigated in the temperature range between 800 and 600°C. It is shown that the thin-film multilayer cathode allows increasing the SOFC efficiency, and the obtained optimum thickness of the LSC and CGO layers provides the maximum power density for SOFCs. The maximum power density of 2430, 1170, and 290 mW cm–2 is obtained respectively at 800, 700, and 600°C for the SOFCs with the LSC/CGO/LSC layer 50/50/50 nm thick. The polarization resistance measured at 800 and 750°C on the symmetric SOFC with the CGO electrolyte and LSC/CGO/LSC cathode is 0.17 and 0.3 Ω cm2, respectively.
Remark Link

Performance and Processes of Pure CO2 Electrolysis in Solid Oxide Cells

ID=651
Authors Lucy Dittrich, Tobias Duyster, Severin Foit, I. C. Vinke, Rüdiger-A. Eichel and L. G. J. (Bert) De Haart
Source
ECS Transactions
Volume: 103, Issue: 1, Pages: 501
Time of Publication: 2021
Abstract Pure carbon dioxide (CO2) electrolysis presents a sustainable method for the production of carbon monoxide (CO). CO is an important feedstock for producing base chemicals for the chemical industry. High-temperature CO2 electrolysis in solid oxide electrolysis cells (SOECs) make it possible to recycle climate-damaging CO2 and utilize renewable energy sources for the conversion to CO. We thoroughly investigated the direct CO2 electrolysis electrochemically with respect to the process parameters temperature, fuel utilization, load, flow rates, and CO2:CO feed gas ratio. With faradaic efficiencies of about 100% and high current densities of up to 1.5 Abold dotcm,-2 the results show the high potential of pure CO2 electrolysis.
Remark Link

Metal Supported Proton Conducting Ceramic Cell with Thin Film Electrolyte for Electrolysis Application

ID=650
Authors Haoyu Zheng, Feng Han, Noriko Sata, Matthias Riegraf, Amir Masoud Dayaghi, Truls Norby and Rémi Costa
Source
ECS Transactions
Volume: 103, Issue: 1, Pages: 693
Time of Publication: 2021
Abstract Manufacturing of metal supported proton conducting ceramic cells is investigated in the present study. A low temperature fabrication route was chosen to avoid metal corrosion during the fabrication process, in which pulsed laser deposition (PLD) was employed to apply the thin-film BaZr0.7Ce0.2Y0.1O3-δ electrolyte layer. The surface condition of the support layer is a critical aspect to produce a dense and gas-tight electrolyte layer by PLD. In order to decrease the average size of the 10-30 µm large pores in metal substrate down to the nano-scale, different powders with different particles size were successfully fabricated and integrated into a pore-size graded structure to form a homogeneous porous surface whose size distribution meets the requirements for making a dense PLD coating layer. An electrolyte layer with the intended phase is achieved with a thickness of around 1 µm. Initial electrochemical investigation with a Pt oxygen electrode showed a total resistance of 4.92 Ω cm2 at 600°C at OCV.
Remark Link

Boundaries of High-Temperature Co-Electrolysis Towards Direct CO2-Electrolysis

ID=649
Authors Stephanie Elisabeth Wolf, Lucy Dittrich, Markus Nohl, Severin Foit, Izaak Vinke, L. G. J. De Haart and Rudiger-A Eiche
Source
ECS Transactions
Volume: 103, Issue: 1, Pages: 493
Time of Publication: 2021
Abstract In this work, the transition boundary of high-temperature co-electrolysis towards pure CO2-electrolysis was investigated. AC and DC measurements with H2O concentrations from 0.0%eq to 39.7%eq led to the identification of the underlying electrochemical processes. Comparison of CO2 conversion in the (R)WGS reaction with electrochemical CO2 reduction by means of area specific resistance (ASR) showed that gas composition determines the dominant reduction reaction (H2O or CO2 reduction). The cell performance of CO2-electrolysis was found to be comparable to co-electrolysis in the boundary region up to around 4.7 %eq H2O. The threshold for the perception of CO2-electrolysis during co-electrolysis has been established to be around 31.7 %eq H2O. The hypothesis that pre-domination of CO2-electrolysis increases with decreasing H2O concentrations below this boundary limit was underlined by measurement results.
Remark Link

The Electrochemical Society, find out more The Electrochemical Society, find out more Metal Supported Proton Conducting Ceramic Cell with Thin Film Electrolyte for Electrolysis Application

ID=647
Authors Haoyu Zheng, Feng Han, Noriko Sata, Matthias Riegraf, Amir Masoud Dayaghi, Truls Norby and Rémi Costa
Source
ECS Transactions
Volume: 103, Pages: 693
Time of Publication: 2021
Abstract Manufacturing of metal supported proton conducting ceramic cells is investigated in the present study. A low temperature fabrication route was chosen to avoid metal corrosion during the fabrication process, in which pulsed laser deposition (PLD) was employed to apply the thin-film BaZr0.7Ce0.2Y0.1O3-δ electrolyte layer. The surface condition of the support layer is a critical aspect to produce a dense and gas-tight electrolyte layer by PLD. In order to decrease the average size of the 10-30 µm large pores in metal substrate down to the nano-scale, different powders with different particles size were successfully fabricated and integrated into a pore-size graded structure to form a homogeneous porous surface whose size distribution meets the requirements for making a dense PLD coating layer. An electrolyte layer with the intended phase is achieved with a thickness of around 1 µm. Initial electrochemical investigation with a Pt oxygen electrode showed a total resistance of 4.92 Ω cm2 at 600°C at OCV.
Remark Link

Syngas production with CO2 utilization through the oxidative reforming of methane in a new cermet-carbonate packed-bed membrane reactor

ID=646
Authors J.A. Fabián-Anguiano, M.J. Ramírez-Moreno, H. Balmori-Ramírez, J.A. Romero-Serrano, I.C. Romero-Ibarra, Xiaoli Ma, J. Ortiz-Landeros
Source
Journal of Membrane Science
Volume: 637, Pages: 119607
Time of Publication: 2021
Cermet; Gas Separation; Membrane reactor; Oxidative reforming of methane
Remark https://doi.org/10.1016/j.memsci.2021.119607
Link

Structural and Electrochemical Properties of Scandia Alumina Stabilized Zirconia Thin Films

ID=645
Authors Mantas Sriubas, Darius Virbukas, Nursultan Kainbayev, Kristina Bockute and Giedrius Laukaitis
Source
Coatings
Volume: 11, Issue: 7, Pages: 800
Time of Publication: 2021
Abstract This work presents a systematic investigation of scandia alumina stabilized zirconia (ScAlSZ, composition: ZrO2:Sc2O3:Al2O3 93:6:1 wt.%) thin films (~2 μm). Thin films were formed by the e-beam evaporation method on 450 °C substrates. The influence of Al concentration on thin film microstructure, structure, and electrochemical properties was characterized by EDS, XRD, Raman, and EIS methods. It was found that the aluminum concentration in the deposited thin films decreased with an increase in the deposition rate. The concentration of Al changed from 15.9 to 3.8 at.% when the deposition rates were 0.2 and 1.6 nm/s, respectively. The crystallinity of the thin films depended strongly on the concentration of Al, resulting in an amorphous phase when Al concentration was 22.2 at.% and a crystalline phase when Al concentration was lower. ScAlSZ thin films containing 15.9 at.% of Al had monoclinic and tetragonal phases, while thin films with 1.6 and 3.8 at.% of Al had a mixture of cubic, tetragonal, and monoclinic phases. The phase transition was observed during the thermal annealing process. Cubic and rhombohedral phases formed in addition to monoclinic and tetragonal phases appeared after annealing ScAlSZ thin films containing 15.9 and 22.2 at.% of aluminum. The highest total ionic conductivity (σbulk = 2.89 Sm−1 at 800 °C) was achieved for ScAlSZ thin films containing 3.8 at.% of Al. However, thin films containing a higher concentration of aluminum had more than 10 times lower total conductivity and demonstrated changes in activation energy at high temperatures (>560 °C). Activation energies changed from ~1.10 to ~1.85 eV.
Keywords electron beam deposition; scandia alumina stabilized zirconia (ScAlSZ); solid oxide fuel cells (SOFC); ionic conductivity
Remark https://doi.org/10.3390/coatings11070800
Link
norecs.com

This article is the property of its author, please do not redistribute or use elsewhere without checking with the author.