NORECS / Products / ProboStat Accessories / Oxygen sensors Search FAQ Order and Enquiry Contact Language
Oxygen sensors

The use of controlled atmospheres during measurements at high temperatures is a specialty of the ProboStat. Nevertheless, the establishment of controlled atmospheres is not entirely trivial. This is mainly done before the gas enters the ProboStat, and may require one or more of prefabricated gas mixtures, gas mixing, total pressure control, electrochemical pumping, wetting, and drying and other filtering/gettering.

In some cases measuring pO2 at the region of interest is paramount; sometimes sending certain amount of oxygen is not same as having certain amount of oxygen at the target area (high temperature reactions, leakage, etc.) NORECS provides following types of oxygen sensors:

1) The MOSE oxygen sensor is a tiny YSZ sensor that requires no reference gas and can be built to fit either in the inner or the outer gas chamber of ProboStat. The inside/outside chamber can also be the inside/outside of a membrane. The sensor is built to be as 3 wire electrode assembly and also acts as S-type thermocouple.

2) ZOSHBI oxygen sensor for ProboStat inner chamber.

3) Other YSZ or other solid electrolyte tube replacing the sample support tube. Setup guide.

In order to control pO2 one usually uses mixtures of O2 and an inert gas (e.g. Ar, N2) for relatively oxidizing conditions, CO+CO2 mixtures for more reducing conditions and H2+H2O mixtures for even more reducing conditions. In both the latter types of mixtures, additions of inert gas (e.g. Ar) can be done to lower the activity of carbon and hydrogen without, in principle, affecting the oxygen activity. Monitoring of pO2 can be useful to check the actual activity, to provide feedback to a mixing or pumping system, or to provide information of instantaneous pO2 in transient experiments. However, one should be aware that monitoring methods may have flaws just like control (mixing and pumping) methods. Systems may be built with different levels of sophistication. For instance a gas containing water vapour or CO2 may be led through three cells: The first has an oxygen sensor and an oxygen pump by which an appropriate amount of oxygen is pumped in or out to reach the desired pO2. The second cell has the actual sample and is where the measurement is done. The third has a sensor where the pO2 of the gas leaving the measurement cell is monitored, as a check. One or more of the sensors may be integrated with the measurement cell if possible. However, most users will settle with a simpler system, using a mixing or pumping stage and one sensor.

MOSE (Miniature oxygen sensor assembly)

In-situ miniature oxygen sensor assembly ready for use in any standard ProboStat. MOSE has built-in metal reference so no reference gas is required. It has high resistance to thermal shocks. This miniaturized sensor (diameter = 3 mm, length 10 mm) is suitable for measuring continuously partial pressure variation from 10-35 to 10 atm. Working temperature range for the normal version is 500 to 800°C, but high temperature version with range 600°C to 1050°C is also available. Instrumentation for reading the signal and measuring the temperature is optional. The input impedance > 1000 Mohm is required.

A tiny oxygen sensor can be mounted directly next to your sample in the ProboStat measurement cell:

Mose manual

Picture below shows the tip of the MOSE sensor next to a ProboStat sample support tube.

 

ZOSHBI

While requiring a reference gas, this sensor model has way higher maximum temperature than the more convenient MOSE sensors.

ZOSHBI manual

These articles refer to ProboStat or other NORECS products, filtered with keywords: 'YSZ, Yttria, Oxygen sensor, Nernst'  
ID=713

Effect of Steam to Carbon Dioxide Ratio on the Performance of a Solid Oxide Cell for H2O/CO2 Co-Electrolysis

Authors Naouma Bimpiri, Argyro Konstantinidou, Dimitrios Tsiplakides, Stella Balomenou and Kalliopi Maria Papazisi
Source
Nanomaterials
Volume: 13, Issue: 2, Pages: 299
Time of Publication: 2023
Abstract The mixture of H2 and CO, the so-called syngas, is the value-added product of H2O and CO2 co-electrolysis and the feedstock for the production of value-added chemicals (mainly through Fischer-Tropsch). The H2/CO ratio determines the process in which syngas will be utilized and the type of chemicals it will produce. In the present work, we investigate the effect of H2O/CO2 (steam/carbon dioxide, S/C) ratio of 0.5, 1 and 2 in the feed, on the electrochemical performance of an 8YSZ electrolyte-supported solid oxide cell and the H2/CO ratio in the outlet, under co-electrolysis at 900 °C. The B-site iron doped lanthanum strontium chromite La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF) is used as fuel electrode material while as oxygen electrode the state-of-the art LSM perovskite is employed. LSCF is a mixed ionic-electronic conductor (MIEC) operating both under a reducing and oxidizing atmosphere. The cell is electrochemically characterized under co-electrolysis conditions both in the presence and absence of hydrogen in the feed of the steam and carbon dioxide mixtures. The results indicate that under the same concentration of hydrogen and different S/C ratios, the same electrochemical performance with a maximum current density of approximately 400 mA cm−2 is observed. However, increasing p(H2) in the feed results in higher OCV, smaller iV slope and Rp values. Furthermore, the maximum current density obtained from the cell does not seem to be affected by whether H2 is present or absent from the fuel electrode feed but has a significant effect on the H2/CO ratio in the analyzed outlet stream. Moreover, the H2/CO ratio seems to be identical under polarization at different current density values. Remarkably, the performance of the LSCF perovskite fuel electrode is not compromised by the exposure to oxidizing conditions, showcasing that this class of electrocatalysts retains their reactivity in oxidizing, reducing, and humid environments.
Keywords Co-electrolysis; perovskite oxide; doping; lanthanum chromite; LSCF; solid oxide; SOEC; syngas; steam to carbon dioxide ratio
Remark https://doi.org/10.3390/nano13020299
Link
ID=624

Metal-Support Interaction and Electrochemical Promotion of Nano- Structured Catalysts for the Reverse Water Gas Shift Reaction

Author Christopher Panaritis
Source
Time of Publication: 2021
Abstract ii Abstract The continued release of fossil-fuel derived carbon dioxide (CO2) emissions into our atmosphere led humanity into a climate and ecological crisis. Converting CO2 into valuable chemicals and fuels will replace and diminish the need for fossil fuel-derived products. Through the use of a catalyst, CO2 can be transformed into a commodity chemical by the reverse water gas shift (RWGS) reaction, where CO2 reacts with renewable hydrogen (H2) to form carbon monoxide (CO). CO then acts as the source molecule in the Fischer-Tropsch (FT) synthesis to form a range of hydrocarbons to manufacture chemicals and fuels. While the FT synthesis is a mature process, the conversion of CO2 into CO has yet to be made commercially available due to the constraints associated with high reaction temperature and catalytic stability. Noble metal ruthenium (Ru) has been widely used for the RWGS reaction due to its high catalytic activity, however, several constraints hinder its practical use, associated with its high cost and its susceptibility to deactivation. The doping or bimetallic use of non-noble metals iron (Fe) and cobalt (Co) is an attractive option to lower material cost and tailor the selectivity of the CO2 conversion towards the RWGS reaction without compromising catalytic activity. Furthermore, employing nanostructured catalysts as nanoparticles is a viable solution to further lower the amount of metal used and utilize the highly active surface area of the catalyst. Dispersing nanoparticles on ionically conductive supports/solid electrolytes which contain species like O2-, H+, Na+, and K+, provide an approach to further enhance the reaction. This phenomenon is referred to as metal-support interaction (MSI), allowing for the ions to back spillover from the support and onto the catalyst surface. An in-situ approach referred to as Non-Faradaic Modification of catalytic activity (NEMCA), also known as electrochemical promotion of catalysis (EPOC) is used to in- situ control the movement of ionic species from the solid electrolyte to and away from the catalyst. Both the MSI and EPOC phenomena have been shown to be functionally equivalent, meaning the ionic species act to alter the work function of the catalyst by forming an effective neutral double layer on the surface, which in turn alters the binding energy of the reactant and intermediate species to promote the reaction. The main objective of this work is to develop a catalyst that is highly active and selective to the RWGS reaction at low temperatures (< 400 °C) by employing the MSI and EPOC iii phenomena to enhance the catalytic conversion. The electrochemical enhancement effect will lower energy requirements and allow the RWGS reaction to take place at moderate temperatures. Catalysts composed of Ru, Fe and Co were synthesized through the polyol synthesis technique and deposited on mixed-ionically conductive and ionically conductive supports to evaluate their performance towards the RWGS reaction and the MSI effect. The nano-structured catalysts are deposited as free-standing nanoparticles on solid electrolytes to in-situ promote the catalytic rate through the EPOC phenomenon. Furthermore, Density Functional Theory (DFT) calculations were performed to correlate theory with experiment and elucidate the role polarization has on the binding energy of reactant and intermediate species. The high dispersion of RuFe nanoparticles on ion-containing supports like samarium- doped ceria (SDC) and yttria-stabilized zirconia (YSZ) led to an increase in the RWGS activity due to the MSI effect. A direct correlation between experimental and DFT modeling was established signifying that polarization affected the binding energy of the CO molecule on the surface of Ru regardless of the type of ionic species in the solid electrolyte. The electrochemical enhancement towards the RWGS reaction has been achieved with iron-oxide (FeOx) nanowires on YSZ. The in-situ application of O2- ions from YSZ maintained the most active state of Fe3O4 and FeO towards the RWGS reaction and allowed for persistent-promoted state that lasted long after potential application. Finally, the deposition of FeOx nanowires on Co3O4 resulted in the highest CO2 conversion towards the RWGS reaction due to the metal-oxide interaction between both metals, signifying a self-sustained electro-promoted state.
Remark Thesis submitted to the University of Ottawa in partial Fulfillment of the requirements for the Degree of Doctor of Philosophy
Link
ID=617

The performance of intermediate temperature solid oxide fuel cells with sputter deposited La1-xSrxCoO3 interlayer

Authors A. A. Solovyev, A. V. Shipilova, I. V. Ionov, E. A. Smolyanskiy, A. V. Nikonov & N. B. Pavzderin
Source
Journal of Electroceramics
Volume: 45, Pages: 156–163
Time of Publication: 2020
Abstract The paper studies the performance of the intermediate temperature solid oxide fuel cells with the sputter deposited La1-xSrxCoO3 (LSC) interlayer between the cathode and electrolyte. The sputter deposition of the LSC thin films is carried out in argon gas and in a mixture of argon and oxygen gases and then are annealed at 600, 800 and 1000 °C in air for 2 h. The structure and composition of the sputter deposited LSC films are investigated by the X-ray diffraction analysis, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. The polarization resistance of the sputter deposited LSC films (600 nm thick) on the symmetric cells is 0.13, 0.45 and 2.48 Ohm·cm2 measured at 800, 700 and 600 °C, respectively. Measurements are performed by electrochemical impedance spectroscopy. The maximum power density of the anode-supported solid oxide fuel cells with the yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte, LSC interlayer, and LSC cathode is 2.27, 1.58 and 0.68 W/cm2 measured at 800, 700 and 600 °C, respectively. These values of the power density are respectively 1.4, 1.6 and 2.3 times higher than that of the reference cell without the LSC interlayer.
Remark Link
ID=609

Synthesis and processing of SOFC components for the fabrication and characterization of anode supported cells

Authors Aritza Wain-Martin, Roberto Campana, Aroa Morán-Ruiz, Aitor Larrañaga, María Isabel Arriortua
Source
Boletín de la Sociedad Española de Cerámica y Vidrio
Time of Publication: 2020
Abstract In this article, it is intended to evaluate the performances of previously synthesized different nanometric compounds as SOFC components under real conditions. For this purpose, anodic supports SOFCs have been manufactured in different configurations. The compounds NiO-(Y2O3)0.08(ZrO2)0.92 (NiO–YSZ), (Y2O3)0.08(ZrO2)0.92 (YSZ), Sm0.2Ce0.8O1.9 (SDC), La0.6Sr0.4FeO3 (LSF) and LaNi0.6Fe0.4O3 (LNF) were used as anode support, electrolyte, barrier, cathode and contact layer, respectively. To obtain the cells, the anode supports were produced by uniaxial pressing and the remaining layers were added using the airbrush technique, assembling them by different sintering processes. The cells developed have been electrochemically tested in a temperature range between 750 and 865 °C. Additionally, degradation tests have been carried out under constant current. Moreover, to characterize the microstructure of the cells, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectroscopy (EDX) analyzer has been used. The results obtained show that the incorporation of cathode and contact layers increases the power densities and decreases the total resistances of the cells with respect to the cell without cathode, especially with the addition of the LNF contact layer. Despite the improvement obtained, more tests have to be carried out in order to optimize the performance of SOFC devices in degradation tests.
Keywords Solid oxide fuel cells; Processing; Composite; Degradations; Electrochemical impedance spectra
Remark Available online 22 December 2020
Link
ID=606

Reversible fuel electrode supported solid oxide cells fabricated by aqueous multilayered tape casting

Authors L. Bernadet, M. Morales, X. G. Capdevila, F. Ramos, M. C. Monterde, J. A. Calero, A. Morata, M. Torrell and A. Tarancón
Source
J. Phys. Energy
Volume: 3, Issue: 2, Pages: 024002
Time of Publication: 2021
Abstract Fuel electrode supported solid oxide cells (SOCs) have been developed on an industrial scale using the aqueous tape-casting technique. The NiO–yttria-stabilized zirconia Y2O3–ZrO2 (YSZ) fuel electrode and YSZ electrolyte have been manufactured by multilayer co-laminated tape casting. Details of the tape-casting slurry formulations are described and discussed. Two types of cells were fabricated with different microstructures of the NiO–YSZ support discussed. Good electrochemical performance and stability in SOFC mode at 750 °C and 0.7 V for both button cells reaching around >0.75 W cm−2 and with no measurable degradation after >700 h were observed. The selected cell was scaled up to large-area cells (36 cm2 of the active area) and electrochemically tested at 750 °C in a single repetition unit (SRU) in SOFC (Solid Oxide Fuel Cell), SOEC (Solid Oxide Electrolysis Cell) and co-SOEC (Solid Oxide co-Electrolysis Cell) mode, and in a short-stack of two SRUs in SOFC mode. A current up to 17 A was obtained at 1.4 V (0.7 V cell−1) with the short-stack configuration in SOFC mode, corresponding to ∼0.5 A cm−2 and 24 W. The performances of the aqueous-based SOC cells can be considered highly remarkable, thus supporting the success in scaling the fabrication of SOC stacks using more environmentally friendly processes than conventional ones.
Remark Link
ID=568

Studying the Effects of Siloxanes on Solid Oxide Fuel Cell Performance

Authors Zivak, Milica
Source
Time of Publication: 2020
Abstract Solid oxide fuel cells (SOFCs) are a promising technology for converting landfill gas into electricity, simultaneously providing a renewable source of energy. However, the contaminants present in landfill gas pose an obstacle to using it for energy generation. The research objective was to examine the effect siloxanes in landfill gas have on the performance of Ni-YSZ/Hionic™/LSM SOFCs, particularly through silica deposition on the Ni-YSZ anode. This was accomplished with voltammetric experiments using the ProboStat™ and anode surface analysis using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). To establish whether siloxanes can be detrimental to SOFC operation, hydrogen spiked with varying concentrations of decamethylcyclopentasiloxane (D5), a representative siloxane, was used as a fuel gas. Compared to operation under pure H2, which reliably gives a steady state output, the cell showed a 10% loss in voltage after 3 hours each at 1 ppmv D5 and 5 ppmv D5. Another cell operated on H2 gas containing 10 ppmv D5 experienced a 13% loss in voltage output after 6 hours, and SEM/EDS analysis showed the presence of silica deposits on the cell anodes. This was viewed as water generated via electrochemical reaction hydrolyzing siloxanes to silica and poisoning the SOFC anode. However, when humidified methane, a better landfill gas analogue, was spiked with D5, the cell’s voltage output was stable, and silica was not detected on the anode; instead D5 was deposited as silica on surfaces inside the ProboStat™. Thus, the necessity of humidifying the hydrocarbon fuel also provided a protection against anode poisoning by siloxanes. Nevertheless, experiments with humidified Mahoning Landfill gas failed to reach the expected voltage and current output. It was not clear from SEM/EDS analysis what contaminants were responsible for the decreased cell performance; more surface-sensitive techniques are recommended for further studies.
Remark Master of Science in Chemistry, Youngstown State University, Department of Chemistry.
Link
ID=510

Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance

Authors A.A. Solovyeva, A.M. Lebedynskiy, A.V. Shipilova, I.V. Ionov, E.A. Smolyanskiy, A.L. Lauk, G.E. Remnev
Source
International Journal of Hydrogen Energy
Time of Publication: 2018
Abstract Nickel oxide-yttria stabilized zirconia (NiO-YSZ) thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni and ZrY targets onto heated commercial NiO-YSZ substrates. The microstructure and composition of the deposited films were investigated with regard to application as thin anode functional layers (AFLs) for solid oxide fuel cells (SOFCs). The pore size, microstructure and phase composition of both as-deposited and annealed at 1200 °C for 2 h AFLs were studied by scanning electron microscopy and X-ray diffractometry and controlled by changing the deposition process parameters. The results show that annealing in air at 1200 °C is required to improve structural homogeneity of the films. NiO-YSZ films have pores and grains of several hundred nanometers in size after reduction in hydrogen. Adhesion of deposited films was evaluated by scratch test. Anode-supported solid oxide fuel cells with the magnetron sputtered anode functional layer, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were fabricated and tested. Influence of thin anode functional layer on performance of anode-supported SOFCs was studied. It was shown that electrochemical properties of the single fuel cells depend on the NiO volume content in the NiO-YSZ anode functional layer. Microstructural changes of NiO-YSZ layers after nickel reduction-oxidation (redox) cycling were studied. After nine redox cycles at 750 °C in partial oxidation conditions, the cell with the anode NiO-YSZ layer showed stable open circuit voltage values with the power density decrease by 11% only.
Remark In Press, https://doi.org/10.1016/j.ijhydene.2018.11.193
Link
ID=478

Enhanced Performance of Gadolinia-Doped Ceria Diffusion Barrier Layers Fabricated by Pulsed Laser Deposition for Large-Area Solid Oxide Fuel Cells

Authors
Source
ACS Appl. Energy Mater.
Time of Publication: 2018
Abstract Diffusion barrier layers are typically introduced in solid oxide fuel cells (SOFCs) to avoid reaction between state-of-the-art cathode and electrolyte materials, La1–xSrxCo1–yFeyO3-δ and yttria-stabilized zirconia (YSZ), respectively. However, commonly used layers of gadolinia-doped ceria (CGO) introduce overpotentials that significantly reduce the cell performance. This performance decrease is mainly due to the low density achievable with traditional deposition techniques, such as screen printing, at acceptable fabrication temperatures. In this work, perfectly dense and reproducible barrier layers for state-of-the-art cells (∼80 cm2) were implemented, for the first time, using large-area pulsed laser deposition (LA-PLD). In order to minimize cation interdiffusion, the low-temperature deposited barrier layers were thermally stabilized in the range between 1100 and 1400 °C. Significant enhanced performance is reported for cells stabilized at 1150 °C showing excellent power densities of 1.25 W·cm–2 at 0.7 V and at a operation temperature of 750 °C. Improved cells were finally included in a stack and operated in realistic conditions for 4500 h revealing low degradation rates (0.5%/1000 h) comparable to reference cells. This approach opens new perspectives in manufacturing highly reproducible and stable barrier layers for a new generation of SOFCs.
Keywords Cation diffusion at CGO/YSZ interface; diffusion barrier layer; gadolinia doped ceria (CGO); pulsed laser deposition (PLD); solid oxide fuel cells (SOFCs); SrZrO3
Remark DOI: 10.1021/acsaem.8b00039
Link
ID=473

Influence of texture and grain misorientation on the ionic conduction in multilayered solid electrolytes – interface strain effects in competition with blocking grain boundaries

Authors J. Keppner, J. Schubert, M. Ziegner, B. Mogwitz, J. Janek and C. Korte
Source
Physical Chemistry Chemical Physics
Issue: 14 Time of Publication: 2018
Abstract Interface strain and its influence on the ionic transport along hetero-interfaces has gained a lot of attention over the last decade and is controversially discussed. We investigate the relaxation of mismatch induced interfacial strain as a function of the degree of orientation/texture of the columnar crystallites and assess the impact on the oxygen ion conductivity in Er2O3/YSZ multilayer systems. Results from X-ray diffraction clearly show, that the width of the strained hetero-interface region increases with an increasing degree of orientation of the crystallites. The combined impact of film texture and strain at the hetero-interfaces of the film on the ionic conductivity however is not easily deduced from these measurements. The samples with the highest degree of orientation, i.e. with only one azimuthal variant, show strong anisotropic electrical properties. In samples with a lower degree of orientation, i.e. samples with a fiber texture, anisotropic properties cannot be detected, possibly due to a geometrical averaging of the electrical properties. The expected strain induced monotonic increase of the ionic conductivity with decreasing layer thickness and thus increasing interfacial influence could only be detected for samples with a fiber texture and a considerable degree of crystallite misorientation. This leads to the important conclusion that the texture and therefore the nature of the grain boundaries and their network influence the ionic conductivity of the multilayer thin films in the same order of magnitude as the misfit induced interface strain. Thus, the potential design of strain-controlled ionic conductors requires additionally the control of the microstructure in terms of grain orientation.
Remark Link
ID=460

Co-deficient PrBaCo2−xO6−δ perovskites as cathode materials for intermediate-temperature solid oxide fuel cells: Enhanced electrochemical performance and oxygen reduction kinetics

Authors Likun Zhang, Shuli Li, Tian Xia, Liping Sun, Lihua Huo, Hui Zhao
Source
International Journal of Hydrogen Energy
Volume: 43, Issue: 7, Pages: 3761-3775
Time of Publication: 2018
Abstract Co-deficient PrBaCo2−xO6−δ perovskites (x = 0, 0.02, 0.06 and 0.1) are synthesized by a solid-state reaction, and the effects of Co-deficiency on the crystal structure, oxygen nonstoichiometry and electrochemical properties are investigated. The PrBaCo2−xO6−δ samples have an orthorhombic layered perovskite structure with double c axis. The degree of oxygen nonstoichiometry increases with decreasing Co content (0 ≤ x ≤ 0.06) and then slightly decreases at x = 0.1. All the samples exhibit the electrical conductivity values of >300 S cm−1 in the temperature range of 100–800 °C in air, which match well the requirement of cathode. With significantly enhanced electrochemical performance and good chemical compatibility between PrBaCo2−xO6−δ and CGO, this system of Co-deficient perovskite is promising cathode material for IT-SOFCs. Among all these components, PrBaCo1.94O6−δ gives lowest polarization resistance of 0.059 Ω cm2 at 700 °C in air. When tested as cathode in fuel cell, the anode-supported Ni-YSZ|YSZ|CGO|PrBaCo1.94O6−δ cell delivers a maximum peak power density of 889 mW cm−2 at 650 °C, which is higher than that of PrBaCoO6−δ cathode-based cell (764 mW cm−2). The oxygen reduction kinetics at the PrBaCo1.94O6−δ cathode interface is also explored, and the rate-limiting steps for oxygen reduction reaction are determined.
Keywords Intermediate-temperature solid oxide fuel cells, Cathode material, Layered perovskite, Electrochemical performance, Oxygen reduction kinetics
Remark https://doi.org/10.1016/j.ijhydene.2018.01.018
Link
ID=459

Deposition of nickel oxide-yttria stabilized zirconia thin films by reactive magnetron sputtering

Authors A.A .Solovyev, A.M. Lebedynskiy, A.V. Shipilova, I.V.Ionov, E.A. Smolyanskiy, A.L. Lauk, G.E. Remnev
Source
International Journal of Hydrogen Energy
Time of Publication: 2018
Abstract Nickel oxide-yttria stabilized zirconia (NiO-YSZ) thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni and Zr-Y targets onto heated commercial NiO-YSZ substrates. The microstructure and composition of the deposited films were investigated with regard to application as thin anode functional layers (AFLs) for solid oxide fuel cells (SOFCs). The porosity and microstructure of both as-deposited and annealed at 1200 °C for 2 h AFLs were studied by scanning electron microscopy and X-ray diffractometry and controlled by changing the deposition process parameters. The results show that annealing in air at 1200 °C is required to improve film crystallinity and structural homogeneity. NiO-YSZ films have pores and grains of several hundred nanometers in size after reduction in hydrogen. Adhesion of deposited films was evaluated by scratch test. Anode-supported solid oxide fuel cells with the magnetron sputtered anode functional layer, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were fabricated and tested. Influence of thin anode functional layer on performance of anode-supported SOFCs was studied. It was shown that electrochemical properties of the single fuel cells depend on the NiO volume content in the NiO-YSZ anode functional layer. Microstructural changes of NiO-YSZ layers after nickel reduction-oxidation (redox) cycling were studied. After nine redox cycles at 750 °C in partial oxidation conditions, the cell with the anode NiO-YSZ layer showed stable open circuit voltage values with the power density decrease by 11% only.
Keywords Solid oxide fuel cells, Magnetron sputtering, Thin-film anode, Microstructure, Redox cycling
Remark Available online 7 February 2018, https://doi.org/10.1016/j.ijhydene.2018.01.076
Link
ID=458

Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering

Authors Yi-Xin Liu, Sea-Fue Wang, Yung-Fu Hsu, Chi-Hua Wang
Source
Journal of Power Sources
Volume: 381, Pages: 101-106
Time of Publication: 2018
Abstract In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm−2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.
Keywords Solid oxide fuel cell, Sputtering, Electrolyte Doped lanthanum silicate
Remark https://doi.org/10.1016/j.jpowsour.2018.02.007
Link
ID=456

Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2 cathode for solid oxide fuel cells

Authors A.A. Solovyev, I.V. Ionov, A.V. Shipilova, P.D. Maloney
Source
Journal of Electroceramics
Time of Publication: 2018
Abstract Studied here are the effects of sintering temperature of La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O2 (LSCF–CGO) cathodes on their microstructure and performance of intermediate-temperature solid oxide fuel cells (IT-SOFC). Phase composition, microstructure and electrochemical properties were investigated by X-ray powder diffraction (XRD), scanning electron microscopy and current-voltage characteristics measurement, respectively. The electrochemical performances of Ni–YSZ anode-supported SOFC having YSZ electrolyte (4 μm) with CGO interlayer (2 μm) are studied with LSCF–CGO (50:50 wt%) cathodes in the temperature range 600–800 °C using H2 as fuel and air as oxidant. The cathode microstructure was found to be less dense and to contain smaller grains as the sintering temperature was decreased in the range 1250–1150 °C. Results reveal that sintering temperature and electrode morphology have strong influence on electrochemical performances of the IT-SOFC. Highest maximum power density of ∼1.26 W/cm2 is achieved during cell testing at 800 °C with a cathode sintered at 1200 °C. However, cells with in-situ sintered LSCF–CGO cathode showed highest power density at 600 °C (0.48 W/cm2) because there is no particle coarsening at low sintering temperatures.
Keywords LSCF&#8211;CGO, Composite cathode, Microstructure,, Performanc, Intermediate-temperature solid oxide fuel cells
Remark https://doi.org/10.1007/s10832-018-0114-5, First Online: 29 January 2018
Link
ID=432

Microstructural engineering and use of efficient poison resistant Au-doped Ni-GDC ultrathin anodes in methane-fed solid oxide fuel cells

Authors
Source
International Journal of Hydrogen Energy
Volume: 43, Issue: 2, Pages: 885–893
Time of Publication: 2018
Abstract Ultrathin porous solid oxide fuel cell (SOFC) anodes consisting of nickel-gadolinia-doped-ceria (Ni-GDC) cermets with a unique porous micro-columnar architecture with intimate contact between the GDC and the Ni phases were made by magnetron sputtering at an oblique deposition angle and characterised in detail by a variety of methods prior to use in hydrogen or methane-fuelled SOFCs. These Ni-GDC anodes exhibited excellent transport properties, were robust under thermal cycling and resistant to delamination from the underlying yttria-stabilised zirconia electrolyte. Similarly prepared Au-doped Ni-GDC anodes exhibited the same morphology, porosity and durability. The gold associated exclusively with the Ni component in which it was present as a surface alloy. Strikingly, whatever their treatment, a substantial amount of Ce3+ persisted in the anodes, even after operation at 800 °C under fuel cell conditions. With hydrogen as fuel, the un-doped and Au-doped Ni-GDC anodes exhibited identical electrochemical performances, comparable to that of much thicker commercial state-of-the-art Ni-GDC anodes. However, under steam reforming conditions with CH4/H2O mixtures the behaviour of the Au-doped Ni-GDC anodes were far superior, exhibiting retention of good power density and dramatically improved resistance to deactivation by carbon deposition. Thus two distinct beneficial effects contributed to overall performance: persistence of Ce3+ in the working anodes could induce a strong metal-support interaction with Ni that enhanced the catalytic oxidation of methane, while formation of a Nisingle bondAu surface alloy that inhibited carbonisation and poisoning of the active nickel surface.
Keywords SOFC; Ultrathin film anodes; Magnetron sputtering; Gadolinia doped ceria; Carbon-tolerant; Gold doping
Remark https://doi.org/10.1016/j.ijhydene.2017.11.020
Link
ID=429

Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications

Authors
Source
Journal of the European Ceramic Society
Time of Publication: 2017
Abstract Additive manufacturing represents a revolution due to its unique capabilities for freeform fabrication of near net shapes with strong reduction of waste material and capital cost. These unfair advantages are especially relevant for expensive and energy-demanding manufacturing processes of advanced ceramics such as Yttria-stabilized Zirconia, the state-of-the-art electrolyte in Solid Oxide Fuel Cell applications. In this study, self-supported electrolytes of yttria-stabilized zirconia have been printed by using a stereolithography three-dimensional printer. Printed electrolytes and complete cells fabricated with cathode and anode layers of lanthanum strontium manganite- and nickel oxide-yttria-stabilized zirconia composites, respectively, were electrochemical characterized showing full functionality. In addition, more complex configurations of the electrolyte have been printed yielding an increase of the performance entirely based on geometrical aspects. Complementary, a numerical model has been developed and validated as predictive tool for designing more advanced configurations that will enable highly performing and fully customized devices in the next future.
Keywords Solid oxide fuel cell, 3D printing, Stereolithography, Yttria-stabilized zirconia, Electrolyte
Remark Available online 15 November 2017, https://doi.org/10.1016/j.jeurceramsoc.2017.11.033
Link
ID=412

Stability and range of the type II Bi1 − xWxO1.5 + 1.5x solid solution

Authors Julia Wind, Paula Kayser, Zhaoming Zhang, Ivana Radosavljevic Evansc, Chris D.Ling
Source
Solid State Ionics
Volume: 308, Pages: 173-180
Time of Publication: 2017
Abstract We have established the stability and range of the cubic type II phase of Bi1 − xWxO1.5 + 1.5x using a combination of X-ray diffraction, neutron diffraction and X-ray absorption spectroscopy. Type II is a high temperature modification that can be obtained by quenching/rapid cooling of samples with compositions between x = 0.148 to x = 0.185. Slower cooling rates yield the stable low temperature polymorph, the tetragonal type Ib phase (Bi rich samples), and mixtures of type Ib and Aurivillius phase (W-rich samples). Throughout the entire solid solution range, type II exhibits a (3 + 3) dimensional incommensurate modulation with modulation vectors slightly smaller than 1/3 based on a cubic fluorite type subcell (δ-Bi2O3). The main structural motifs are well-defined tetrahedra of WO6 octahedra in a δ-Bi2O3-matrix, with additional W being incorporated on corners and face centers of the approximate commensurate 3 × 3 × 3 supercell in octahedral coordination, confirmed by XANES analysis of the W L3-edge. Impedance measurements reveal oxide ionic conductivities comparable to those of yttria-stabilised zirconia even after a decrease in ionic conductivity of about half an order of magnitude on thermal cycling due to transition to the tetragonal type Ib phase.
Keywords Oxide ionic conductors, Solid solution, Bismuth oxide, Incommensurately modulated structures, Neutron diffraction, XANES
Remark https://doi.org/10.1016/j.ssi.2017.07.015
Link
ID=411

High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells

Authors
Source
Journal of Power Sources
Volume: 363, Pages: 251-259
Time of Publication: 2017
Abstract Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable IV characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.
Keywords Magnetron sputtering, Oblique angle deposition, Thin film anodes, Layered and hybrid structures, SOFC
Remark https://doi.org/10.1016/j.jpowsour.2017.07.085
Link
ID=409

Formation of NiO/YSZ functional anode layers of solid oxide fuel cells by magnetron sputtering

Authors I.V. Ionov, A.A. Solov&#8217;ev, A.M. Lebedinskii, A.V. Shipilova, E.A. Smolyanskii, A N. Koval&#8217;chuk, A.L. Lauk
Source
Russian Journal of Electrochemistry
Volume: 53, Issue: 6, Pages: 670–676
Time of Publication: 2017
Abstract The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte.
Keywords SOFC, magnetron sputtering, nanostructured electrode, thin-film anode, polarization resistance
Remark Link
ID=408

Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance

Authors J.A.Cebollero, R.Lahoz, M.A.Laguna-Bercero, A.Larrea
Source
Journal of Power Sources
Volume: 360, Pages: 336-344
Time of Publication: 2017
Abstract Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.
Keywords SOFC, Laser machining, Corrugated surface, Electrode polarisation, Cathode activation, Electrode/electrolyte interface
Remark https://doi.org/10.1016/j.jpowsour.2017.05.106
Link
ID=387

Characterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells

Authors
Source
International Journal of Hydrogen Energy
Time of Publication: 2017
Abstract By laser machining we have prepared thin and self-supported yttria stabilized zirconia (YSZ) electrolytes that can be used in electrolyte-supported solid oxide fuel cells for reducing the operation temperature. The membranes, which are supported by thicker areas of the same material, have an active area of ∼20 μm in thickness and up to 8 mm in diameter. Buckling limits the maximum size of the thin areas to below 1 mm, the overall effective active area being formed by multiple thin areas bounded by ribs. Electron Backscattering Diffraction experiments determined that there are not significant strains inside the membranes and that the heat-affected zone is confined to a shallow layer of ∼1–2 μm. The bending strength of the membranes decreases by ∼26% as a result of the surface microcracking produced by the laser machining. The membranes have a roughness of ∼2.5 μm and are coated by a layer of nanoparticles produced by the laser ablation. This coating and small roughness is not detrimental for the cathodic polarization of the cells. Conversely, the cathode polarization resistance decreases ∼5% in the 650–850 °C temperature range.
Keywords SOFC; Solid electrolytes; Laser machining; Self-supporting ceramic membranes
Remark http://dx.doi.org/10.1016/j.ijhydene.2016.12.112
Link
ID=361

Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia – nickel anodes for application in solid electrolyte fuel cells

Authors
Source
Journal of Power Sources
Volume: 324, Pages: 679–686
Time of Publication: 2016
Abstract We report on the synthesis of undoped ∼5 μm YSZ-Ni porous thin films prepared by reactive pulsed DC magnetron sputtering at an oblique angle of incidence. Pre-calcination of the amorphous unmodified precursor layers followed by reduction produces a film consisting of uniformly distributed tilted columnar aggregates having extensive three-phase boundaries and favorable gas diffusion characteristics. Similarly prepared films doped with 1.2 at.% Au are also porous and contain highly dispersed gold present as Ni-Au alloy particles whose surfaces are strongly enriched with Au. With hydrogen as fuel, the performance of the undoped thin film anodes is comparable to that of 10–20 times thicker typical commercial anodes. With a 1:1 steam/carbon feed, the un-doped anode cell current rapidly falls to zero after 60 h. In striking contrast, the initial performance of the Au-doped anode is much higher and remains unaffected after 170 h. Under deliberately harsh conditions the performance of the Au-doped anodes decreases progressively, almost certainly due to carbon deposition. Even so, the cell maintains some activity after 3 days operation in dramatic contrast with the un-doped anode, which stops working after only three hours of use. The implications and possible practical application of these findings are discussed.
Keywords Magnetron sputtering; Oblique angle deposition; Thin film anodes; Carbon-tolerant; SOFC
Remark doi:10.1016/j.jpowsour.2016.05.124
Link
ID=359

Thin film YSZ-based limiting current-type oxygen and humidity sensor on thermally oxidized silicon substrates

Author Shunsuke Akasaka
Source
Sensors and Actuators B: Chemical
Volume: 236, Pages: 499–505
Time of Publication: 2016
Abstract In this paper, we propose a thin film yttria-stabilized-zirconia (YSZ)-based limiting current-type oxygen and humidity sensor. These sensors were fabricated from layers of thin films on thermally oxidized silicon substrates, with the intention of installing such sensors onto microheaters. Sputtered porous Pt cathode are situated beneath the YSZ films, and are designed to provide a gas diffusion layer as well as function as electrodes. The porous Pt layer exhibits good performance as a gas diffusion layer because of its small pore size. Optimized YSZ sputtering growth conditions result in in-plane densification without the presence of cracks. The temperature dependence of the oxygen sensor’s level of limiting current was T −0.5. This result was attributed to the shrinkage of the extremely small pores in the gas diffusion layer. Between 450 and 550 °C, following the application of a voltage of 1.1 V, the time response measurements show a rapid response of a few seconds. The oxygen concentration and water vapor pressure correspond to the level of the limiting current at 1.1 V and 1.8 V, respectively.
Keywords Yttria-stabilized-zirconia; Limiting current; Oxygen sensor; Humidity sensor; Thin film; Silicon substrate
Remark doi:10.1016/j.snb.2016.06.025
Link
ID=355

Influence of cathode functional layer composition on electrochemical performance of solid oxide fuel cells

Authors
Source
Journal of Solid State Electrochemistry
Time of Publication: 2016
Abstract In this work, anode-supported solid oxide fuel cells (SOFC) were tested with a yttria-stabilized zirconia (YSZ) (8 mol% Y2O3-ZrO2)/gadolinium-doped ceria (GDC) (Ce0.9Gd 0.1O1.95) bilayer electrolyte and two lanthanum strontium cobalt ferrite (LSCF) composition as functional cathode layer: La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF 1) and La0.60Sr0.40Co0.2Fe0.8O3-δ (LSCF 2). The functional cathode layers were made of 50 % (w/w) LSCF and 50 % (w/w) GDC. Microstructural characterization was performed by scanning electron microscopy and X-ray diffraction. Electrochemical impedance spectroscopy (EIS) and power measurements were performed under oxygen and hydrogen atmospheres. The microscopy studies showed that the LSCF 2 functional layer is more uniform and adherent to the electrolyte and the cathode collector than the LSCF 1 functional layer, which has cracks, chips, and lower adhesion. The use of the LSCF 2 layer allowed an approximately 25-fold reduction in ohmic resistance (0.06 Ω cm−2) compared with the LSCF 1 layer (1.5 Ω cm−2). The power measurements showed a considerable increase in the power cell using LSCF 2 (approximately 420 mW cm−2) compared with the power cell using LSCF 1 (approximately 180 mW cm−2).
Keywords SOFC, LSCF, Interface, Electrochemical performance, Cathode, Functional layer
Remark First Online: 20 May 2016. DOI: 10.1007/s10008-016-3241-4
Link
ID=351

Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC

Authors A. A. Solovyev , A. V. Shipilova, I. V. Ionov, A. N. Kovalchuk, S. V. Rabotkin, V. O. Oskirko
Source
Journal of Electronic Materials
Time of Publication: 2016
Abstract Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm−2 and 500 mW cm−2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm−2 at 800°C and 1 W cm−2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.
Keywords Solid oxide fuel cell CGO YSZ bilayer electrolyte magnetron sputtering pulse electron-beam treatment
Remark Link
ID=293

Bi1−xNbxO1.5+x (x=0.0625, 0.12) fast ion conductors: Structures, stability and oxide ion migration pathways

Authors Matthew L. Tate, Jennifer Hack, Xiaojun Kuang, Garry J. McIntyre, Ray L. Withers, Mark R. Johnson, Ivana Radosavljevic Evans
Source
Journal of Solid State Chemistry
Volume: 225, Pages: 383–390
Time of Publication: 2015
Abstract A combined experimental and computational study of Bi1−xNbxO1.5+x (x=0.0625 and 0.12) has been carried out using laboratory X-ray, neutron and electron diffraction, impedance measurements and ab-initio molecular dynamics. We demonstrate that Bi0.9375Nb0.0625O1.5625, previously reported to adopt a cubic fluorite-type superstructure, can form two different polymorphs depending on the synthetic method: a metastable cubic phase is produced by quenching; while slower cooling yields a stable material with a tetragonal √2×√2×1 superstructure, which undergoes a reversible phase transition into the cubic form at ~680 °C on subsequent reheating. Neutron diffraction reveals that the tetragonal superstructure arises mainly from ordering in the oxygen sublattice, with Bi and Nb remaining disordered, although structured diffuse scattering observed in the electron diffraction patterns suggests a degree of short-range ordering. Both materials are oxide ion conductors. On thermal cycling, Bi0.88Nb0.12O1.62 exhibits a decrease in conductivity of approximately an order of magnitude due to partial transformation into the tetragonal phase, but still exhibits conductivity comparable to yttria-stabilised zirconia (YSZ). Ab-initio molecular dynamics simulations performed on Bi0.9375Nb0.0625O1.5625 show that oxide ion diffusion occurs by O2− jumps between edge- and corner-sharing OM4 groups (M=Bi, Nb) via tetrahedral □M4 and octahedral □M6 vacancies.
Keywords Functional oxides; Fast ion conductors; Complex superstructures
Remark doi:10.1016/j.jssc.2015.01.006
Link
ID=266

Magnetron formation of Ni/YSZ anodes of solid oxide fuel cells

Authors A. A. Solov&#8217;ev, N. S. Sochugov, I. V. Ionov, A. V. Shipilova, A. N. Koval&#8217;chuk
Source
Russian Journal of Electrochemistry
Volume: 50, Issue: 7, Pages: 647-655
Time of Publication: 2014
Abstract Physico-chemical and structural properties of nanocomposite NiO/ZrO2:Y2O3 (NiO/YSZ) films applied using the reactive magnetron deposition technique are studied for application as anodes of solid oxide fuel cells. The effect of oxygen consumption and magnetron power on the discharge parameters is determined to find the optimum conditions of reactive deposition. The conditions for deposition of NiO/YSZ films, under which the deposition rate is maximum (12 μm/h), are found and the volume content of Ni is within the range of 40–50%. Ni-YSZ films reduced in a hydrogen atmosphere at the temperature of 800°C have a nanoporous structure. However, massive nickel agglomerates are formed in the course of reduction on the film surface; their amount grows at an increase in Ni content in the film. Solid oxide fuel cells with YSZ supporting electrolyte and a LaSrMnO3 cathode are manufactured to study electrochemical properties of NiO/YSZ films. It is shown that fuel cells with a nanocomposite NiO/YSZ anode applied using a magnetron sputtering technique have the maximum power density twice higher than in the case of fuel cells with an anode formed using the high-temperature sintering technique owing to a more developed gas-anode-electrolyte three-phase boundary.
Remark Link
ID=265

Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures

Authors
Source
Energy Environ. Sci.
Time of Publication: 2014
Abstract Batteries, with a limited capacity, have dominated the power supply of portable devices for decades. Recently, the emergence of new types of highly efficient miniaturized power generators like micro fuel cells has opened up alternatives for continuous operation on the basis of unlimited fuel feeding. This work addresses for the first time the development of a full ceramic micro solid oxide fuel cell fabricated in silicon technology. This full-ceramic device represents a new generation of miniaturized power generators able to operate at high temperatures, and therefore able to work with a hydrocarbon fuel supply. Dense yttria-stabilized zirconia free-standing large-area membranes on micromachined silicon were used as the electrolyte. Thin-film porous electrodes of La0.6Sr0.4CoO3−δ and gadolinia-doped ceria were employed as cathode and anode materials, respectively. The electrochemical performance of all the components was evaluated by partial characterization using symmetrical cells, yielding excellent performance for the electrolyte (area specific resistance of 0.15 Ω cm2 at temperatures as low as 450 °C) and the electrodes (area specific resistance of the cathode and anode below 0.3 Ω cm2 at 700 °C). A micro solid oxide fuel cell with an active area of 2 mm2 and less than 1 micrometer in thickness was characterized under fuel cell conditions, using hydrogen as a fuel and air as an oxidant. A maximum power density of 100 mW cm−2 and 2 mW per single membrane was generated at 750 °C, having an open circuit voltage of 1.05 V. Impedance spectroscopy of the all-ceramic membrane showed a total area-specific resistance of [similar]3.5 Ω cm2.
Remark DOI: 10.1039/C4EE00748D
Link
ID=224

Galliosilicate glasses for viscous sealants in solid oxide fuel cell stacks: Part III: Behavior in air and humidified hydrogen

Authors T. Jin, M.O. Naylor, J.E. Shelby, S.T. Misture
Source
International Journal of Hydrogen Energy
Time of Publication: 2013
Abstract Optimized boro-galliosilicate glasses were selected to evaluate their viscous sealing performance in both air and humidified hydrogen atmospheres. Selected low-alkali and alkali-free glasses show excellent performance, with viscous behavior maintained for more than 1000 h in wet hydrogen. Candidate sealants were thermally treated at 850 and 750 °C for up to 1000 h in contact with alumina coated 441 stainless steel (Al-SS) and 8 mol% yttria-stabilized zirconia (8YSZ). Each sealant crystallizes appreciably by 1000 h, and their coefficients of thermal expansion range from 10.2 to 11.7 × 10−6 K−1, 100–400 °C. The remnant amorphous phases in most of the partially crystallized sealants show softening points near or below the target operating temperatures, thus enabling viscous sealing. Humidified hydrogen in general increases the rate of crystallization but does not change the crystalline phases formed or interactions with 8YSZ. For the low-alkali GaBA series, wet H2 enhances the interfacial interaction between potassium in the glass phase and the protective alumina coating on the stainless steel.
Keywords Solid oxide fuel cell; Sealing glass; Galliosilicate; Thermal expansion; Hydrogen
Remark Available online 25 October 2013
Link
ID=208

Effects of Nb5+, Mo6+, and W6+ dopants on the germanate-based apatites as electrolyte for use in solid oxide fuel cells

Authors Sea-Fue Wang, Yung-Fu Hsu, Wan-Ju Lin
Source
International Journal of Hydrogen Energy
Volume: 38, Issue: 27, Pages: 12015–12023
Time of Publication: 2013-09
Abstract Rare information is available in the literature on the cell performance of the solid oxide fuel cells (SOFCs) using apatites known for their good electrical conductivity as electrolyte materials. In this study, La9.5Ge5.5Nb0.5O26.5, La9.5Ge5.5Mo0.5O26.75, and La9.5Ge5.5W0.5O26.75 ceramics were prepared and characterized. The results indicated that the La9.5Ge5.5Nb0.5O26.5 and La9.5Ge5.5W0.5O26.75 ceramics reported hexagonal phase, while the La9.5Ge5.5Mo0.5O26.75 ceramic demonstrated triclinic symmetry. Among the apatities evaluated, La9.5Ge5.5Nb0.5O26.5 sintered at 1450 °C showed the best conduction with an electrical conductivity value of 0.045 S/cm at 800 °C. Button cells of NiO–SDC/La9.5Ge5.5Nb0.5O26.5/LSCF–SDC were built and revealed good structural integrity. The total ohmic resistance (R0) and interfacial polarization resistance (RP) of the cell read 0.428 and 0.174 Ω cm2 and 0.871 and 1.164 Ω cm2, respectively at 950 and 800 °C. The maximum power densities (MPD) of the single cell at 950 and 800 °C were respectively 0.363 and 0.095 W cm−2. Without optimizing the anode and cathode as well as hermetic sealing of the cell against the gas, the study found the performance of the single cell with the pure La9.5Ge5.5Nb0.5O26.5 as its electrolyte material superior to those of the SOFC cells with a YSZ electrolyte of comparable thickness shown in the literature.
Keywords Solid oxide fuel cell; Apatite; Impedance; Cell performance
Remark Link
ID=170

Polymorphism and Oxide Ion Migration Pathways in Fluorite-Type Bismuth Vanadate, Bi46V8O89

Authors Xiaojun Kuang, Julia L. Payne, James D. Farrell, Mark R. Johnson, and Ivana Radosavljevic Evans
Source
Chem. Mater.
Volume: 24, Issue: 11, Pages: 2162–2167
Time of Publication: 2012-05
Abstract We report the synthesis, structural characterization, and ionic conductivity measurements for a new polymorph of bismuth vanadate Bi46V8O89, and an ab initio molecular dynamics study of this oxide ion conductor. Structure determination was carried out using synchrotron powder X-ray and neutron diffraction data; it was found that β-Bi46V8O89 crystallizes in space group C2/m and that the key differences between this and the previously reported α-form are the distribution of Bi and V cations and the arrangement of the VO4 coordination polyhedra in structure. β-Bi46V8O89 exhibits good oxide ion conductivity, with σ = 0.01–0.1 S/cm between 600 and 850 °C, which is about an order of magnitude higher than yttria stabilized zirconia. The ab initio molecular dynamics simulations suggest that the ion migration pathways include vacancy diffusion through the Bi–O sublattice, as well as the O2– exchanges between the Bi–O and the V–O sublattices, facilitated by the variability of the vanadium coordination environment and the rotational freedom of the VOx coordination polyhedra.
Keywords Oxide ion conductors; bismuth vanadates; X-ray and neutron diffraction; AIMD simulations
Remark Publication Date (Web): May 3, 2012
Link
ID=148

Fabrication and electrochemical properties of cathode-supported solid oxide fuel cells via slurry spin coating

Authors Min Chen, Jing-Li Luo, Karl T. Chuang, Alan R. Sanger
Source
Electrochimica Acta
Volume: 63, Pages: 277–286
Time of Publication: 2012-02
Abstract A cathode-supported SOFC consisting of LSM (La0.8Sr0.2MnO3-δ) cathode supporter, LSM-Sm0.2Ce0.8O2-δ (SDC) cathode functional layer (CFL), yttria stabilized zirconia (YSZ)/SDC bi-layered electrolyte and Ni-YSZ anode layer was fabricated by a slurry spin coating technique. The influence of the porosity in both the CFL and cathode supporter on the electrochemical properties of the cells has been investigated. It was found that properly controlling the porosity in the CFL would improve the performance of the cells using O2 in the cathode side (O2-cells), with a maximum power density (MPD) value achieving as high as 0.58 W•cm−2 at 850 °C. However, this improvement is not so evident for the cells using air in the cathode side (air-cells). When increasing the porosity in the cathode-supporter, a significant increase of the power density for the air cells due to the decreasing Rconc,c(concentration polarization to the cell resistance) can be ascertained. In terms of our analysis on various electrochemical parameters, the Ract (activation polarization to the cell resistance) is assumed to be mainly responsible for the impedance arcs measured under the OCV condition, with a negligible Rconc,cvalue being able to be detected in our impedances. In this case, a significant decreasing size of the impedance arcs due to the increasing porosity in the cathode supporter would correspond to a decrease of the Ract values, which was proved to be induced by the decreasingRconc,c.
Keywords Slurry spin coating; Cathode-supported SOFC; Concentration polarization; Activation polarization; Power density
Remark Link
ID=93

Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell

Authors Stefan Diethelm, Jan Van Herle
Source
Journal of Power Sources
Volume: 196, Issue: 17, Pages: 7355–7362
Time of Publication: 2011-09
Abstract This study investigates the performance of a standard Ni–YSZ anode supported cell under ethanolsteamreforming operating conditions. Therefore, the fuelcell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H2, CO) in the fuelcell. The electrochemical properties of the fuelcell fed with four different fuel compositions were characterized between 710 and 860 °C by I–V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency. Results show that internalsteamreforming of ethanol takes place significantly on Ni–YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water–gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C.
Keywords SOFC; Ni&#8211;YSZ anode; Ethanol; Internal reforming; Coking; Impedance spectroscopy
Remark Link
norecs.com

This article is the property of its author, please do not redistribute or use elsewhere without checking with the author.