The use of controlled atmospheres during measurements at high temperatures is a specialty of the ProboStat. Nevertheless, the establishment of controlled atmospheres is not entirely trivial. This is mainly done before the gas enters the ProboStat, and may require one or more of prefabricated gas mixtures, gas mixing, total pressure control, electrochemical pumping, wetting, and drying and other filtering/gettering.
In some cases measuring pO2 at the region of interest is paramount; sometimes sending certain amount of oxygen is not same as having certain amount of oxygen at the target area (high temperature reactions, leakage, etc.) NORECS provides following types of oxygen sensors:
1) The MOSE oxygen sensor is a tiny YSZ sensor that requires no reference gas and can be built to fit either in the inner or the outer gas chamber of ProboStat. The inside/outside chamber can also be the inside/outside of a membrane. The sensor is built to be as 3 wire electrode assembly and also acts as S-type thermocouple.
2) ZOSHBI oxygen sensor for ProboStat inner chamber.
3) Other YSZ or other solid electrolyte tube replacing the sample support tube. Setup guide.
In order to control pO2 one usually uses mixtures of O2 and an inert gas (e.g. Ar, N2) for relatively oxidizing conditions, CO+CO2 mixtures for more reducing conditions and H2+H2O mixtures for even more reducing conditions. In both the latter types of mixtures, additions of inert gas (e.g. Ar) can be done to lower the activity of carbon and hydrogen without, in principle, affecting the oxygen activity. Monitoring of pO2 can be useful to check the actual activity, to provide feedback to a mixing or pumping system, or to provide information of instantaneous pO2 in transient experiments. However, one should be aware that monitoring methods may have flaws just like control (mixing and pumping) methods. Systems may be built with different levels of sophistication. For instance a gas containing water vapour or CO2 may be led through three cells: The first has an oxygen sensor and an oxygen pump by which an appropriate amount of oxygen is pumped in or out to reach the desired pO2. The second cell has the actual sample and is where the measurement is done. The third has a sensor where the pO2 of the gas leaving the measurement cell is monitored, as a check. One or more of the sensors may be integrated with the measurement cell if possible. However, most users will settle with a simpler system, using a mixing or pumping stage and one sensor.
MOSE (Miniature oxygen sensor assembly)
In-situ miniature oxygen sensor assembly ready for use in any standard ProboStat. MOSE has built-in metal reference so no reference gas is required. It has high resistance to thermal shocks. This miniaturized sensor (diameter = 3 mm, length 10 mm) is suitable for measuring continuously partial pressure variation from 10-35 to 10 atm. Working temperature range for the normal version is 500 to 800°C, but high temperature version with range 600°C to 1050°C is also available. Instrumentation for reading the signal and measuring the temperature is optional. The input impedance > 1000 Mohm is required.
A tiny oxygen sensor can be mounted directly next to your sample in the ProboStat measurement cell:
- No reference gas required
- Low temperature version operating temperature 500ºC to 800ºC
- High temperature version, range 600ºC to 1050ºC also suitable for reducing atmospheres
- 10-30 to 10 atm pO2
- Ready to use assembly of sensor, S-thermocouple and potential electrode
- Mountable at both inside- and outside- chamber of ProboStat
- For any ProboStat configuration (specify purpose on order: Inner or outer chamber, total length of the sensor or inform us on the length of your sample support tube)
Picture below shows the tip of the MOSE sensor next to a ProboStat sample support tube.
ZOSHBI
While requiring a reference gas, this sensor model has way higher maximum temperature than the more convenient MOSE sensors.
- Temperature range from 500 to 1400ºC
- Mounted on the threads of the inner in gas entry
- Sensor length is affected by ProboStat system length and measurement purpose (bar sample, disc sample, or other) So when ordering, specify the desired sensor length.
Effect of Steam to Carbon Dioxide Ratio on the Performance of a Solid Oxide Cell for H2O/CO2 Co-Electrolysis
Authors |
Naouma Bimpiri, Argyro Konstantinidou, Dimitrios Tsiplakides, Stella Balomenou and Kalliopi Maria Papazisi
|
Source |
Nanomaterials
Volume: 13,
Issue: 2,
Pages: 299 Time of Publication: 2023 |
Abstract | The mixture of H2 and CO, the so-called syngas, is the value-added product of H2O and CO2 co-electrolysis and the feedstock for the production of value-added chemicals (mainly through Fischer-Tropsch). The H2/CO ratio determines the process in which syngas will be utilized and the type of chemicals it will produce. In the present work, we investigate the effect of H2O/CO2 (steam/carbon dioxide, S/C) ratio of 0.5, 1 and 2 in the feed, on the electrochemical performance of an 8YSZ electrolyte-supported solid oxide cell and the H2/CO ratio in the outlet, under co-electrolysis at 900 °C. The B-site iron doped lanthanum strontium chromite La0.75Sr0.25Cr0.9Fe0.1O3-δ (LSCF) is used as fuel electrode material while as oxygen electrode the state-of-the art LSM perovskite is employed. LSCF is a mixed ionic-electronic conductor (MIEC) operating both under a reducing and oxidizing atmosphere. The cell is electrochemically characterized under co-electrolysis conditions both in the presence and absence of hydrogen in the feed of the steam and carbon dioxide mixtures. The results indicate that under the same concentration of hydrogen and different S/C ratios, the same electrochemical performance with a maximum current density of approximately 400 mA cm−2 is observed. However, increasing p(H2) in the feed results in higher OCV, smaller iV slope and Rp values. Furthermore, the maximum current density obtained from the cell does not seem to be affected by whether H2 is present or absent from the fuel electrode feed but has a significant effect on the H2/CO ratio in the analyzed outlet stream. Moreover, the H2/CO ratio seems to be identical under polarization at different current density values. Remarkably, the performance of the LSCF perovskite fuel electrode is not compromised by the exposure to oxidizing conditions, showcasing that this class of electrocatalysts retains their reactivity in oxidizing, reducing, and humid environments. |
Keywords | Co-electrolysis; perovskite oxide; doping; lanthanum chromite; LSCF; solid oxide; SOEC; syngas; steam to carbon dioxide ratio |
Remark |
https://doi.org/10.3390/nano13020299 Link |
A New Electroactive and Stable Electrode Based on Praseodymium Molybdate for Symmetrical SOFCs
Authors |
N.V. Lyskov, A.I. Kotova, D.I. Petukhov, S.Ya. Istomin, G.N. Mazo
|
Source |
Russian Journal of Electrochemistry
Volume: 58,
Pages: 989–997 Time of Publication: 2022 |
Abstract | The electrochemical activity of a new electrode material based on Pr5Mo3O16 + δ (РМО) within the composition of a symmetrical solid oxide fuel cell (S-SOFC) of the electrolyte-supported design is studied. The model S-SOFC of the РМО/Ce0.9Gd0.1O1.95(GDC)/Zr0.84Y0.16O1.92(YSZ)/GDC/PMO composition demonstrated the maximum power density of 28 mW/cm2 at 900°Ð¡. To improve the power characteristics of S-SOFC, the porous buffer GDC layer is modified by the method of Pr6O11 infiltration. It is found that the addition of electroactive Pr6O11 into the GDC buffer layer provides the three-fold increase in the fuel-cell power density with the maximum of 90 mW/cm2 at 900°Ð¡. The 10 h life-time test of the model S-SOFC with the РМО/GDC + Pr6O11/YSZ/GDC + Pr6O11/PMO composition carried out at a load of 0.7 V reveals the absence of any considerable degradation in fuel cell power characteristics. The results obtained suggest that the new electrode material based on PMO holds promise for the development of S-SOFC. |
Remark | Link |
Magnetron sputtered LSC-GDC composite cathode interlayer for intermediate-temperature solid oxide fuel cells
Authors |
A.A. Solovyev, A.V. Shipilova, S.V. Rabotkin, E.A. Smolyanskiy, A.N. Shmakov
|
Source |
International Journal of Hydrogen Energy
Volume: 47,
Issue: 89,
Pages: 37967-37977 Time of Publication: 2022 |
Abstract | The paper investigates the influence of the La0.6Sr0.4CoO3-δ-Gd0.1Ce0.9O1.95 (LSC-GDC) composite cathode interlayer on the operation of solid oxide fuel cells (SOFCs). Thin composite layers with the different GDC content are obtained by the reactive magnetron sputtering. The impact of the high-temperature annealing on the LSC-GDC phase composition is studied by the X-ray diffraction instrument using additionally a synchrotron radiation. The NiO-YSZ anodes with the YSZ electrolyte thin film and GDC barrier layer are used for the SOFC fabrication. The current-voltage curves and impedance spectra of SOFCs are obtained in the temperature range of 700–800°Ð¡. It is shown that not annealed composite layers with ∼50 vol% GDC content possess the most efficient electrochemical activity. The maximum power density of the SOFC with the LSC-GDC interlayer is 1322, 1041 and 796 mW/cm2 at 800, 750 and 700 °C, respectively, which is 20–35% higher than that of the cell without cathode interlayer. |
Remark |
https://doi.org/10.1016/j.ijhydene.2022.08.281 Link |
Detailed characterization of oxide-ion and proton transport numbers in Sr–Ti layered perovskites using an improved electromotive force method
Authors |
Yutaro Yagi, Isao Kagomiya & Ken-ichi Kakimoto
|
Source |
Journal of Materials Research
Time of Publication: 2022
|
Abstract | Numerous Sr–Ti-based layered perovskite-structured compounds exhibit protonic conductivity. In a previous study, we found that a new Sr2Ti0.95Al0.05O4−δ (STA05) layered perovskite also shows evidence of protonic conductivity. However, Sr–Ti-based layered perovskites are also potential oxide-ion conductors. Detailed transport numbers for both protons and oxide-ions in Sr–Ti-based layered perovskites remain unclear. To solve this problem, we here propose an improved approach based on electromotive force (emf) measurements to account for the contributions of thermal emf and polarization to the total conductivity. In the first step of this study, the conditions for investigating actual emfs were evaluated using measurements of yttria-stabilized zirconia as a typical oxide-ion conductor. The optimized emf technique was subsequently used to evaluate the transport numbers of STA05, which was found to exhibit no oxide-ion transport. Thus, STA05 is concluded to be a mixed proton and electron conductor.. |
Remark | Link |
Advanced metal oxide infiltrated electrodes for boosting the performance of solid oxide cells
Authors |
Alodia Orera, Alejandro Betato, Jorge Silva-Trevino, Angel Larrea and Miguel A. Laguna-Bercero
|
Source |
J. Mater. Chem. A
Time of Publication: 2021
|
Abstract | An efficient way for boosting the performance of solid oxide electrodes is the infiltration of metallic nanoparticles into both electrodes. In this work we will focus on improving the performance of standard lanthanum strontium manganite oxygen electrodes, by the addition of different metal oxide nanoparticles. First studies will be performed using cerium oxide nanoparticles, as this is the classic oxide already proposed in the literature. Other novel metal oxides such as praseodymium or manganese oxide will be explored, as studies in the literature for these two metal oxides are very scarce. The effect of metal oxide infiltration into LSM/YSZ oxygen electrodes will be studied in both symmetrical cells and complete microtubular cells using conventional fuel electrodes (NiO-YSZ) and electrolytes (YSZ). The obtained current densities in both fuel cell and electrolysis modes are significantly enhanced in comparison with other results in the literature for microtubular configuration. |
Remark |
DOI: 10.1039/D1TA07902F Link |
Electrical properties of yttria-stabilised hafnia ceramics
Authors |
Meshari Alotaibi, Linhao Li and Anthony R Wes
|
Source |
Phys. Chem. Chem. Phys.
Volume: 23,
Pages: 25951 Time of Publication: 2021 |
Abstract | Cubic, yttria-stabilised hafnia, YSH, ceramics of general formula, YxHf1xO2x/2: x = 0.15, 0.30 and 0.45 were sintered at 1650–1750 1C and characterised by impedance spectroscopy. All three compositions are primarily oxide ion conductors with a small amount of p-type conductivity that depends on atmospheric conditions and appears to increase with x. The electronic conductivity is attributed to hole location on under-bonded oxide ions and the absorption of oxygen molecules by oxygen vacancies, both of which occur on substitution of Hf4+ by Y3+. Composition x = 0.15 has the highest total conductivity and shows curvature in the Arrhenius plot at high temperatures, similar to that of the most conductive yttria-stabilised zirconia. |
Remark | Link |
Anode-supported solid oxide fuel cells with multilayer LSC/CGO/LSC cathode
Authors |
A.A. Solovyev, K.A. Kuterbekov, S.A. Nurkenov, A.S. Nygymanova, A.V. Shipilova, E.A. Smolyanskiy, S.V. Rabotkin., I.V. Ionov
|
Source |
Fuel Cells
Volume: 21,
Issue: 4,
Pages: 408-412 Time of Publication: 2021 |
Abstract | The multilayer La0.6Sr0.4CoO3/Ce0.9Gd0.1O2/La0.6Sr0.4CoO3 (LSC/CGO/LSC) thin film cathode of the solid oxide fuel cell (SOFC) with the different thickness of the LSC and CGO layers are obtained by magnetron sputtering. Cathodes are deposited onto the NiO/8YSZ anode-supported 8YSZ/CGO bilayer electrolyte. The influence of the deposited multilayer cathode on the SOFC performance is investigated in the temperature range between 800 and 600°C. It is shown that the thin-film multilayer cathode allows increasing the SOFC efficiency, and the obtained optimum thickness of the LSC and CGO layers provides the maximum power density for SOFCs. The maximum power density of 2430, 1170, and 290 mW cm–2 is obtained respectively at 800, 700, and 600°C for the SOFCs with the LSC/CGO/LSC layer 50/50/50 nm thick. The polarization resistance measured at 800 and 750°C on the symmetric SOFC with the CGO electrolyte and LSC/CGO/LSC cathode is 0.17 and 0.3 Ω cm2, respectively. |
Remark | Link |
Metal-Support Interaction and Electrochemical Promotion of Nano- Structured Catalysts for the Reverse Water Gas Shift Reaction
Author |
Christopher Panaritis
|
Source |
Time of Publication: 2021
|
Abstract | ii Abstract The continued release of fossil-fuel derived carbon dioxide (CO2) emissions into our atmosphere led humanity into a climate and ecological crisis. Converting CO2 into valuable chemicals and fuels will replace and diminish the need for fossil fuel-derived products. Through the use of a catalyst, CO2 can be transformed into a commodity chemical by the reverse water gas shift (RWGS) reaction, where CO2 reacts with renewable hydrogen (H2) to form carbon monoxide (CO). CO then acts as the source molecule in the Fischer-Tropsch (FT) synthesis to form a range of hydrocarbons to manufacture chemicals and fuels. While the FT synthesis is a mature process, the conversion of CO2 into CO has yet to be made commercially available due to the constraints associated with high reaction temperature and catalytic stability. Noble metal ruthenium (Ru) has been widely used for the RWGS reaction due to its high catalytic activity, however, several constraints hinder its practical use, associated with its high cost and its susceptibility to deactivation. The doping or bimetallic use of non-noble metals iron (Fe) and cobalt (Co) is an attractive option to lower material cost and tailor the selectivity of the CO2 conversion towards the RWGS reaction without compromising catalytic activity. Furthermore, employing nanostructured catalysts as nanoparticles is a viable solution to further lower the amount of metal used and utilize the highly active surface area of the catalyst. Dispersing nanoparticles on ionically conductive supports/solid electrolytes which contain species like O2-, H+, Na+, and K+, provide an approach to further enhance the reaction. This phenomenon is referred to as metal-support interaction (MSI), allowing for the ions to back spillover from the support and onto the catalyst surface. An in-situ approach referred to as Non-Faradaic Modification of catalytic activity (NEMCA), also known as electrochemical promotion of catalysis (EPOC) is used to in- situ control the movement of ionic species from the solid electrolyte to and away from the catalyst. Both the MSI and EPOC phenomena have been shown to be functionally equivalent, meaning the ionic species act to alter the work function of the catalyst by forming an effective neutral double layer on the surface, which in turn alters the binding energy of the reactant and intermediate species to promote the reaction. The main objective of this work is to develop a catalyst that is highly active and selective to the RWGS reaction at low temperatures (< 400 °C) by employing the MSI and EPOC iii phenomena to enhance the catalytic conversion. The electrochemical enhancement effect will lower energy requirements and allow the RWGS reaction to take place at moderate temperatures. Catalysts composed of Ru, Fe and Co were synthesized through the polyol synthesis technique and deposited on mixed-ionically conductive and ionically conductive supports to evaluate their performance towards the RWGS reaction and the MSI effect. The nano-structured catalysts are deposited as free-standing nanoparticles on solid electrolytes to in-situ promote the catalytic rate through the EPOC phenomenon. Furthermore, Density Functional Theory (DFT) calculations were performed to correlate theory with experiment and elucidate the role polarization has on the binding energy of reactant and intermediate species. The high dispersion of RuFe nanoparticles on ion-containing supports like samarium- doped ceria (SDC) and yttria-stabilized zirconia (YSZ) led to an increase in the RWGS activity due to the MSI effect. A direct correlation between experimental and DFT modeling was established signifying that polarization affected the binding energy of the CO molecule on the surface of Ru regardless of the type of ionic species in the solid electrolyte. The electrochemical enhancement towards the RWGS reaction has been achieved with iron-oxide (FeOx) nanowires on YSZ. The in-situ application of O2- ions from YSZ maintained the most active state of Fe3O4 and FeO towards the RWGS reaction and allowed for persistent-promoted state that lasted long after potential application. Finally, the deposition of FeOx nanowires on Co3O4 resulted in the highest CO2 conversion towards the RWGS reaction due to the metal-oxide interaction between both metals, signifying a self-sustained electro-promoted state. |
Remark |
Thesis submitted to the University of Ottawa in partial Fulfillment of the requirements for the Degree of Doctor of Philosophy Link |
The performance of intermediate temperature solid oxide fuel cells with sputter deposited La1-xSrxCoO3 interlayer
Authors |
A. A. Solovyev, A. V. Shipilova, I. V. Ionov, E. A. Smolyanskiy, A. V. Nikonov & N. B. Pavzderin
|
Source |
Journal of Electroceramics
Volume: 45,
Pages: 156–163 Time of Publication: 2020 |
Abstract | The paper studies the performance of the intermediate temperature solid oxide fuel cells with the sputter deposited La1-xSrxCoO3 (LSC) interlayer between the cathode and electrolyte. The sputter deposition of the LSC thin films is carried out in argon gas and in a mixture of argon and oxygen gases and then are annealed at 600, 800 and 1000 °C in air for 2 h. The structure and composition of the sputter deposited LSC films are investigated by the X-ray diffraction analysis, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. The polarization resistance of the sputter deposited LSC films (600 nm thick) on the symmetric cells is 0.13, 0.45 and 2.48 Ohm·cm2 measured at 800, 700 and 600 °C, respectively. Measurements are performed by electrochemical impedance spectroscopy. The maximum power density of the anode-supported solid oxide fuel cells with the yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte, LSC interlayer, and LSC cathode is 2.27, 1.58 and 0.68 W/cm2 measured at 800, 700 and 600 °C, respectively. These values of the power density are respectively 1.4, 1.6 and 2.3 times higher than that of the reference cell without the LSC interlayer. |
Remark | Link |
Synthesis and processing of SOFC components for the fabrication and characterization of anode supported cells
Authors |
Aritza Wain-Martin, Roberto Campana, Aroa Morán-Ruiz, Aitor Larrañaga, María Isabel Arriortua
|
Source |
Boletín de la Sociedad Española de Cerámica y Vidrio
Time of Publication: 2020
|
Abstract | In this article, it is intended to evaluate the performances of previously synthesized different nanometric compounds as SOFC components under real conditions. For this purpose, anodic supports SOFCs have been manufactured in different configurations. The compounds NiO-(Y2O3)0.08(ZrO2)0.92 (NiO–YSZ), (Y2O3)0.08(ZrO2)0.92 (YSZ), Sm0.2Ce0.8O1.9 (SDC), La0.6Sr0.4FeO3 (LSF) and LaNi0.6Fe0.4O3 (LNF) were used as anode support, electrolyte, barrier, cathode and contact layer, respectively. To obtain the cells, the anode supports were produced by uniaxial pressing and the remaining layers were added using the airbrush technique, assembling them by different sintering processes. The cells developed have been electrochemically tested in a temperature range between 750 and 865 °C. Additionally, degradation tests have been carried out under constant current. Moreover, to characterize the microstructure of the cells, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectroscopy (EDX) analyzer has been used. The results obtained show that the incorporation of cathode and contact layers increases the power densities and decreases the total resistances of the cells with respect to the cell without cathode, especially with the addition of the LNF contact layer. Despite the improvement obtained, more tests have to be carried out in order to optimize the performance of SOFC devices in degradation tests. |
Keywords | Solid oxide fuel cells; Processing; Composite; Degradations; Electrochemical impedance spectra |
Remark |
Available online 22 December 2020 Link |
Reversible fuel electrode supported solid oxide cells fabricated by aqueous multilayered tape casting
Authors |
L. Bernadet, M. Morales, X. G. Capdevila, F. Ramos, M. C. Monterde, J. A. Calero, A. Morata, M. Torrell and A. Tarancón
|
Source |
J. Phys. Energy
Volume: 3,
Issue: 2,
Pages: 024002 Time of Publication: 2021 |
Abstract | Fuel electrode supported solid oxide cells (SOCs) have been developed on an industrial scale using the aqueous tape-casting technique. The NiO–yttria-stabilized zirconia Y2O3–ZrO2 (YSZ) fuel electrode and YSZ electrolyte have been manufactured by multilayer co-laminated tape casting. Details of the tape-casting slurry formulations are described and discussed. Two types of cells were fabricated with different microstructures of the NiO–YSZ support discussed. Good electrochemical performance and stability in SOFC mode at 750 °C and 0.7 V for both button cells reaching around >0.75 W cm−2 and with no measurable degradation after >700 h were observed. The selected cell was scaled up to large-area cells (36 cm2 of the active area) and electrochemically tested at 750 °C in a single repetition unit (SRU) in SOFC (Solid Oxide Fuel Cell), SOEC (Solid Oxide Electrolysis Cell) and co-SOEC (Solid Oxide co-Electrolysis Cell) mode, and in a short-stack of two SRUs in SOFC mode. A current up to 17 A was obtained at 1.4 V (0.7 V cell−1) with the short-stack configuration in SOFC mode, corresponding to ∼0.5 A cm−2 and 24 W. The performances of the aqueous-based SOC cells can be considered highly remarkable, thus supporting the success in scaling the fabrication of SOC stacks using more environmentally friendly processes than conventional ones. |
Remark | Link |
Electrochemical promotion of Ru nanoparticles deposited on a proton conductor electrolyte during CO2 hydrogenation
Authors |
Dimitrios Zagoraiosa, Christopher Panaritis, Aikaterina Krassakopoulou, Elena A. Baranova, Alexandros Katsaounis, Constantinos G. Vayenas
|
Source |
Applied Catalysis B: Environmental
Volume: 276,
Pages: 119148 Time of Publication: 2020 |
Abstract | Recycling CO2 into a carbon-neutral source is a beneficial approach in reducing non-renewable energy sources. Herein, the electrochemical promotion of catalysis (EPOC) has been exploited to enhance the catalytic activity of Ru nanoparticles (0.7−1 nm) deposited on the proton conductor yttria-doped barium zirconate (BZY), as free-standing nanoparticles and supported on Co3O4 semiconductor, for CO2 hydrogenation. Under 250−450 °C and atmospheric pressure, both methanation and reverse water-gas shift (RWGS) reaction take place simultaneously over the Ru nanoparticles with a superior selectivity to CO. Under anodic polarization, free-standing Ru nanoparticles displayed an increase in CH4 and a decrease in CO production, while the opposite effect was observed under cathodic polarization. Ru supported on Co3O4 displayed a superior catalytic activity mostly due to enhanced metal–support interactions. The electronic effects induced by the pairing of Co3O4 and BZY resulted in a new approach to EPOC applications that brings it closer to industrial application. |
Remark | Link |
Studying the Effects of Siloxanes on Solid Oxide Fuel Cell Performance
Authors |
Zivak, Milica
|
Source |
Time of Publication: 2020
|
Abstract | Solid oxide fuel cells (SOFCs) are a promising technology for converting landfill gas into electricity, simultaneously providing a renewable source of energy. However, the contaminants present in landfill gas pose an obstacle to using it for energy generation. The research objective was to examine the effect siloxanes in landfill gas have on the performance of Ni-YSZ/Hionic™/LSM SOFCs, particularly through silica deposition on the Ni-YSZ anode. This was accomplished with voltammetric experiments using the ProboStat™ and anode surface analysis using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). To establish whether siloxanes can be detrimental to SOFC operation, hydrogen spiked with varying concentrations of decamethylcyclopentasiloxane (D5), a representative siloxane, was used as a fuel gas. Compared to operation under pure H2, which reliably gives a steady state output, the cell showed a 10% loss in voltage after 3 hours each at 1 ppmv D5 and 5 ppmv D5. Another cell operated on H2 gas containing 10 ppmv D5 experienced a 13% loss in voltage output after 6 hours, and SEM/EDS analysis showed the presence of silica deposits on the cell anodes. This was viewed as water generated via electrochemical reaction hydrolyzing siloxanes to silica and poisoning the SOFC anode. However, when humidified methane, a better landfill gas analogue, was spiked with D5, the cell’s voltage output was stable, and silica was not detected on the anode; instead D5 was deposited as silica on surfaces inside the ProboStat™. Thus, the necessity of humidifying the hydrocarbon fuel also provided a protection against anode poisoning by siloxanes. Nevertheless, experiments with humidified Mahoning Landfill gas failed to reach the expected voltage and current output. It was not clear from SEM/EDS analysis what contaminants were responsible for the decreased cell performance; more surface-sensitive techniques are recommended for further studies. |
Remark |
Master of Science in Chemistry, Youngstown State University, Department of Chemistry. Link |
Optimization of laser-patterned YSZ-LSM composite cathode-electrolyte interfaces for solid oxide fuel cells
Authors |
J. A. Cebollero, M. A. Laguna-Bercero, R. Lahoz, J. Silva, R. Moreno, A. Larrea
|
Source |
Journal of the European Ceramic Society
Volume: 39,
Issue: 12,
Pages: 3466-3474 Time of Publication: 2019 |
Abstract | Patterned cathode/electrolyte interfaces formed by a hexagonal array of ∼22 μm deep wells with 24 μm lattice parameter have been prepared by pulsed laser machining to enlarge the contact surface and, consequently, to reduce the cathode polarization of Solid Oxide Fuel Cells. These new interfaces have been tested in YSZ-LSM/YSZ/YSZ-LSM symmetrical cells, where the cathode is deposited by dip-coating. Appropriate ceramic suspensions have been formulated to penetrate into deep wells without presenting interfacial delamination after sintering. We analyse their applicability by comparing their rheology with the microstructure and electrochemical performance of the cells. The activation component of the polarization resistance is reduced by ∼50% using ethanol-based suspensions with 20 wt% solids loading, although the gas diffusion component increases due to excessive densification. Alternative ceramic suspensions with 17.5 wt% solids loading provide optimum electrode gas diffusion but lower activation components, resulting in an overall decrease of ∼20% in polarization resistance. |
Remark |
https://doi.org/10.1016/j.jeurceramsoc.2019.02.049 Link |
SOFC cathodic layers using wet powder spraying technique with self synthesized nanopowders
Authors | |
Source |
International Journal of Hydrogen Energy
Volume: 44,
Issue: 14,
Pages: 7555-7563 Time of Publication: 2019 |
Abstract | In this work, a wet powder spraying method has been investigated as a facile low cost route to deposit electrode layer on SOFC electrolyte support. A particular focus has been examining the interfacial stability of the deposited layers, and determining the influence of the thickness of the different layers, as well as the ball milling regime used to produce the electrode inks. The developed system consist of an yttria stabilized zirconia electrolyte support, a La0.6Sr0.4FeO3 (LSF) cathode, a Sm0.2Ce0.8O1.9 (SDC) barrier layer between the electrolyte and the cathode, and LaNi0.6Fe0.4O3 (LNF) as a contact layer, for a future integration with the SOFC interconnector. The electrolyte supports (300 μm thickness and 9 mm diameter) supports were prepared by uniaxial pressing, while the deposition of thin barrier layers, cathode and contact layer were carried out by manual spray coating. |
Remark |
https://doi.org/10.1016/j.ijhydene.2019.01.220 Link |
Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance
Authors |
A.A. Solovyeva, A.M. Lebedynskiy, A.V. Shipilova, I.V. Ionov, E.A. Smolyanskiy, A.L. Lauk, G.E. Remnev
|
Source |
International Journal of Hydrogen Energy
Time of Publication: 2018
|
Abstract | Nickel oxide-yttria stabilized zirconia (NiO-YSZ) thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni and ZrY targets onto heated commercial NiO-YSZ substrates. The microstructure and composition of the deposited films were investigated with regard to application as thin anode functional layers (AFLs) for solid oxide fuel cells (SOFCs). The pore size, microstructure and phase composition of both as-deposited and annealed at 1200 °C for 2 h AFLs were studied by scanning electron microscopy and X-ray diffractometry and controlled by changing the deposition process parameters. The results show that annealing in air at 1200 °C is required to improve structural homogeneity of the films. NiO-YSZ films have pores and grains of several hundred nanometers in size after reduction in hydrogen. Adhesion of deposited films was evaluated by scratch test. Anode-supported solid oxide fuel cells with the magnetron sputtered anode functional layer, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were fabricated and tested. Influence of thin anode functional layer on performance of anode-supported SOFCs was studied. It was shown that electrochemical properties of the single fuel cells depend on the NiO volume content in the NiO-YSZ anode functional layer. Microstructural changes of NiO-YSZ layers after nickel reduction-oxidation (redox) cycling were studied. After nine redox cycles at 750 °C in partial oxidation conditions, the cell with the anode NiO-YSZ layer showed stable open circuit voltage values with the power density decrease by 11% only. |
Remark |
In Press, https://doi.org/10.1016/j.ijhydene.2018.11.193 Link |
Enhanced Performance of Gadolinia-Doped Ceria Diffusion Barrier Layers Fabricated by Pulsed Laser Deposition for Large-Area Solid Oxide Fuel Cells
Authors | |
Source |
ACS Appl. Energy Mater.
Time of Publication: 2018
|
Abstract | Diffusion barrier layers are typically introduced in solid oxide fuel cells (SOFCs) to avoid reaction between state-of-the-art cathode and electrolyte materials, La1–xSrxCo1–yFeyO3-δ and yttria-stabilized zirconia (YSZ), respectively. However, commonly used layers of gadolinia-doped ceria (CGO) introduce overpotentials that significantly reduce the cell performance. This performance decrease is mainly due to the low density achievable with traditional deposition techniques, such as screen printing, at acceptable fabrication temperatures. In this work, perfectly dense and reproducible barrier layers for state-of-the-art cells (∼80 cm2) were implemented, for the first time, using large-area pulsed laser deposition (LA-PLD). In order to minimize cation interdiffusion, the low-temperature deposited barrier layers were thermally stabilized in the range between 1100 and 1400 °C. Significant enhanced performance is reported for cells stabilized at 1150 °C showing excellent power densities of 1.25 W·cm–2 at 0.7 V and at a operation temperature of 750 °C. Improved cells were finally included in a stack and operated in realistic conditions for 4500 h revealing low degradation rates (0.5%/1000 h) comparable to reference cells. This approach opens new perspectives in manufacturing highly reproducible and stable barrier layers for a new generation of SOFCs. |
Keywords | Cation diffusion at CGO/YSZ interface; diffusion barrier layer; gadolinia doped ceria (CGO); pulsed laser deposition (PLD); solid oxide fuel cells (SOFCs); SrZrO3 |
Remark |
DOI: 10.1021/acsaem.8b00039 Link |
Influence of texture and grain misorientation on the ionic conduction in multilayered solid electrolytes – interface strain effects in competition with blocking grain boundaries
Authors |
J. Keppner, J. Schubert, M. Ziegner, B. Mogwitz, J. Janek and C. Korte
|
Source |
Physical Chemistry Chemical Physics
Issue: 14
Time of Publication: 2018
|
Abstract | Interface strain and its influence on the ionic transport along hetero-interfaces has gained a lot of attention over the last decade and is controversially discussed. We investigate the relaxation of mismatch induced interfacial strain as a function of the degree of orientation/texture of the columnar crystallites and assess the impact on the oxygen ion conductivity in Er2O3/YSZ multilayer systems. Results from X-ray diffraction clearly show, that the width of the strained hetero-interface region increases with an increasing degree of orientation of the crystallites. The combined impact of film texture and strain at the hetero-interfaces of the film on the ionic conductivity however is not easily deduced from these measurements. The samples with the highest degree of orientation, i.e. with only one azimuthal variant, show strong anisotropic electrical properties. In samples with a lower degree of orientation, i.e. samples with a fiber texture, anisotropic properties cannot be detected, possibly due to a geometrical averaging of the electrical properties. The expected strain induced monotonic increase of the ionic conductivity with decreasing layer thickness and thus increasing interfacial influence could only be detected for samples with a fiber texture and a considerable degree of crystallite misorientation. This leads to the important conclusion that the texture and therefore the nature of the grain boundaries and their network influence the ionic conductivity of the multilayer thin films in the same order of magnitude as the misfit induced interface strain. Thus, the potential design of strain-controlled ionic conductors requires additionally the control of the microstructure in terms of grain orientation. |
Remark | Link |
Performance evaluation of Mn and Fe doped SrCo 0.9 Nb 0.1 O 3-δ cathode for IT-SOFC application
Authors |
Lokesh Bele, R.K. Lenka, P.K. Patro, L.M. uhmood, T. Mahata and P.K. Sinha
|
Source |
IOP Conference Series: Materials Science and Engineering
Volume: 310
|
Abstract | Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100oC. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC)electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 oC. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 oC. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion coefficient nor the electrochemical activity. |
Remark | Link |
Co-deficient PrBaCo2−xO6−δ perovskites as cathode materials for intermediate-temperature solid oxide fuel cells: Enhanced electrochemical performance and oxygen reduction kinetics
Authors |
Likun Zhang, Shuli Li, Tian Xia, Liping Sun, Lihua Huo, Hui Zhao
|
Source |
International Journal of Hydrogen Energy
Volume: 43,
Issue: 7,
Pages: 3761-3775 Time of Publication: 2018 |
Abstract | Co-deficient PrBaCo2−xO6−δ perovskites (x = 0, 0.02, 0.06 and 0.1) are synthesized by a solid-state reaction, and the effects of Co-deficiency on the crystal structure, oxygen nonstoichiometry and electrochemical properties are investigated. The PrBaCo2−xO6−δ samples have an orthorhombic layered perovskite structure with double c axis. The degree of oxygen nonstoichiometry increases with decreasing Co content (0 ≤ x ≤ 0.06) and then slightly decreases at x = 0.1. All the samples exhibit the electrical conductivity values of >300 S cm−1 in the temperature range of 100–800 °C in air, which match well the requirement of cathode. With significantly enhanced electrochemical performance and good chemical compatibility between PrBaCo2−xO6−δ and CGO, this system of Co-deficient perovskite is promising cathode material for IT-SOFCs. Among all these components, PrBaCo1.94O6−δ gives lowest polarization resistance of 0.059 Ω cm2 at 700 °C in air. When tested as cathode in fuel cell, the anode-supported Ni-YSZ|YSZ|CGO|PrBaCo1.94O6−δ cell delivers a maximum peak power density of 889 mW cm−2 at 650 °C, which is higher than that of PrBaCoO6−δ cathode-based cell (764 mW cm−2). The oxygen reduction kinetics at the PrBaCo1.94O6−δ cathode interface is also explored, and the rate-limiting steps for oxygen reduction reaction are determined. |
Keywords | Intermediate-temperature solid oxide fuel cells, Cathode material, Layered perovskite, Electrochemical performance, Oxygen reduction kinetics |
Remark |
https://doi.org/10.1016/j.ijhydene.2018.01.018 Link |
Deposition of nickel oxide-yttria stabilized zirconia thin films by reactive magnetron sputtering
Authors |
A.A .Solovyev, A.M. Lebedynskiy, A.V. Shipilova, I.V.Ionov, E.A. Smolyanskiy, A.L. Lauk, G.E. Remnev
|
Source |
International Journal of Hydrogen Energy
Time of Publication: 2018
|
Abstract | Nickel oxide-yttria stabilized zirconia (NiO-YSZ) thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni and Zr-Y targets onto heated commercial NiO-YSZ substrates. The microstructure and composition of the deposited films were investigated with regard to application as thin anode functional layers (AFLs) for solid oxide fuel cells (SOFCs). The porosity and microstructure of both as-deposited and annealed at 1200 °C for 2 h AFLs were studied by scanning electron microscopy and X-ray diffractometry and controlled by changing the deposition process parameters. The results show that annealing in air at 1200 °C is required to improve film crystallinity and structural homogeneity. NiO-YSZ films have pores and grains of several hundred nanometers in size after reduction in hydrogen. Adhesion of deposited films was evaluated by scratch test. Anode-supported solid oxide fuel cells with the magnetron sputtered anode functional layer, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were fabricated and tested. Influence of thin anode functional layer on performance of anode-supported SOFCs was studied. It was shown that electrochemical properties of the single fuel cells depend on the NiO volume content in the NiO-YSZ anode functional layer. Microstructural changes of NiO-YSZ layers after nickel reduction-oxidation (redox) cycling were studied. After nine redox cycles at 750 °C in partial oxidation conditions, the cell with the anode NiO-YSZ layer showed stable open circuit voltage values with the power density decrease by 11% only. |
Keywords | Solid oxide fuel cells, Magnetron sputtering, Thin-film anode, Microstructure, Redox cycling |
Remark |
Available online 7 February 2018, https://doi.org/10.1016/j.ijhydene.2018.01.076 Link |
Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering
Authors |
Yi-Xin Liu, Sea-Fue Wang, Yung-Fu Hsu, Chi-Hua Wang
|
Source |
Journal of Power Sources
Volume: 381,
Pages: 101-106 Time of Publication: 2018 |
Abstract | In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm−2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance. |
Keywords | Solid oxide fuel cell, Sputtering, Electrolyte Doped lanthanum silicate |
Remark |
https://doi.org/10.1016/j.jpowsour.2018.02.007 Link |
Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2 cathode for solid oxide fuel cells
Authors |
A.A. Solovyev, I.V. Ionov, A.V. Shipilova, P.D. Maloney
|
Source |
Journal of Electroceramics
Time of Publication: 2018
|
Abstract | Studied here are the effects of sintering temperature of La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O2 (LSCF–CGO) cathodes on their microstructure and performance of intermediate-temperature solid oxide fuel cells (IT-SOFC). Phase composition, microstructure and electrochemical properties were investigated by X-ray powder diffraction (XRD), scanning electron microscopy and current-voltage characteristics measurement, respectively. The electrochemical performances of Ni–YSZ anode-supported SOFC having YSZ electrolyte (4 μm) with CGO interlayer (2 μm) are studied with LSCF–CGO (50:50 wt%) cathodes in the temperature range 600–800 °C using H2 as fuel and air as oxidant. The cathode microstructure was found to be less dense and to contain smaller grains as the sintering temperature was decreased in the range 1250–1150 °C. Results reveal that sintering temperature and electrode morphology have strong influence on electrochemical performances of the IT-SOFC. Highest maximum power density of ∼1.26 W/cm2 is achieved during cell testing at 800 °C with a cathode sintered at 1200 °C. However, cells with in-situ sintered LSCF–CGO cathode showed highest power density at 600 °C (0.48 W/cm2) because there is no particle coarsening at low sintering temperatures. |
Keywords | LSCF–CGO, Composite cathode, Microstructure,, Performanc, Intermediate-temperature solid oxide fuel cells |
Remark |
https://doi.org/10.1007/s10832-018-0114-5, First Online: 29 January 2018 Link |
Microstructural engineering and use of efficient poison resistant Au-doped Ni-GDC ultrathin anodes in methane-fed solid oxide fuel cells
Authors | |
Source |
International Journal of Hydrogen Energy
Volume: 43,
Issue: 2,
Pages: 885–893 Time of Publication: 2018 |
Abstract | Ultrathin porous solid oxide fuel cell (SOFC) anodes consisting of nickel-gadolinia-doped-ceria (Ni-GDC) cermets with a unique porous micro-columnar architecture with intimate contact between the GDC and the Ni phases were made by magnetron sputtering at an oblique deposition angle and characterised in detail by a variety of methods prior to use in hydrogen or methane-fuelled SOFCs. These Ni-GDC anodes exhibited excellent transport properties, were robust under thermal cycling and resistant to delamination from the underlying yttria-stabilised zirconia electrolyte. Similarly prepared Au-doped Ni-GDC anodes exhibited the same morphology, porosity and durability. The gold associated exclusively with the Ni component in which it was present as a surface alloy. Strikingly, whatever their treatment, a substantial amount of Ce3+ persisted in the anodes, even after operation at 800 °C under fuel cell conditions. With hydrogen as fuel, the un-doped and Au-doped Ni-GDC anodes exhibited identical electrochemical performances, comparable to that of much thicker commercial state-of-the-art Ni-GDC anodes. However, under steam reforming conditions with CH4/H2O mixtures the behaviour of the Au-doped Ni-GDC anodes were far superior, exhibiting retention of good power density and dramatically improved resistance to deactivation by carbon deposition. Thus two distinct beneficial effects contributed to overall performance: persistence of Ce3+ in the working anodes could induce a strong metal-support interaction with Ni that enhanced the catalytic oxidation of methane, while formation of a Nisingle bondAu surface alloy that inhibited carbonisation and poisoning of the active nickel surface. |
Keywords | SOFC; Ultrathin film anodes; Magnetron sputtering; Gadolinia doped ceria; Carbon-tolerant; Gold doping |
Remark |
https://doi.org/10.1016/j.ijhydene.2017.11.020 Link |
Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications
Authors | |
Source |
Journal of the European Ceramic Society
Time of Publication: 2017
|
Abstract | Additive manufacturing represents a revolution due to its unique capabilities for freeform fabrication of near net shapes with strong reduction of waste material and capital cost. These unfair advantages are especially relevant for expensive and energy-demanding manufacturing processes of advanced ceramics such as Yttria-stabilized Zirconia, the state-of-the-art electrolyte in Solid Oxide Fuel Cell applications. In this study, self-supported electrolytes of yttria-stabilized zirconia have been printed by using a stereolithography three-dimensional printer. Printed electrolytes and complete cells fabricated with cathode and anode layers of lanthanum strontium manganite- and nickel oxide-yttria-stabilized zirconia composites, respectively, were electrochemical characterized showing full functionality. In addition, more complex configurations of the electrolyte have been printed yielding an increase of the performance entirely based on geometrical aspects. Complementary, a numerical model has been developed and validated as predictive tool for designing more advanced configurations that will enable highly performing and fully customized devices in the next future. |
Keywords | Solid oxide fuel cell, 3D printing, Stereolithography, Yttria-stabilized zirconia, Electrolyte |
Remark |
Available online 15 November 2017, https://doi.org/10.1016/j.jeurceramsoc.2017.11.033 Link |
Stability and range of the type II Bi1 − xWxO1.5 + 1.5x solid solution
Authors |
Julia Wind, Paula Kayser, Zhaoming Zhang, Ivana Radosavljevic Evansc, Chris D.Ling
|
Source |
Solid State Ionics
Volume: 308,
Pages: 173-180 Time of Publication: 2017 |
Abstract | We have established the stability and range of the cubic type II phase of Bi1 − xWxO1.5 + 1.5x using a combination of X-ray diffraction, neutron diffraction and X-ray absorption spectroscopy. Type II is a high temperature modification that can be obtained by quenching/rapid cooling of samples with compositions between x = 0.148 to x = 0.185. Slower cooling rates yield the stable low temperature polymorph, the tetragonal type Ib phase (Bi rich samples), and mixtures of type Ib and Aurivillius phase (W-rich samples). Throughout the entire solid solution range, type II exhibits a (3 + 3) dimensional incommensurate modulation with modulation vectors slightly smaller than 1/3 based on a cubic fluorite type subcell (δ-Bi2O3). The main structural motifs are well-defined tetrahedra of WO6 octahedra in a δ-Bi2O3-matrix, with additional W being incorporated on corners and face centers of the approximate commensurate 3 × 3 × 3 supercell in octahedral coordination, confirmed by XANES analysis of the W L3-edge. Impedance measurements reveal oxide ionic conductivities comparable to those of yttria-stabilised zirconia even after a decrease in ionic conductivity of about half an order of magnitude on thermal cycling due to transition to the tetragonal type Ib phase. |
Keywords | Oxide ionic conductors, Solid solution, Bismuth oxide, Incommensurately modulated structures, Neutron diffraction, XANES |
Remark |
https://doi.org/10.1016/j.ssi.2017.07.015 Link |
High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells
Authors | |
Source |
Journal of Power Sources
Volume: 363,
Pages: 251-259 Time of Publication: 2017 |
Abstract | Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable IV characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work. |
Keywords | Magnetron sputtering, Oblique angle deposition, Thin film anodes, Layered and hybrid structures, SOFC |
Remark |
https://doi.org/10.1016/j.jpowsour.2017.07.085 Link |
Formation of NiO/YSZ functional anode layers of solid oxide fuel cells by magnetron sputtering
Authors |
I.V. Ionov, A.A. Solov’ev, A.M. Lebedinskii, A.V. Shipilova, E.A. Smolyanskii, A N. Koval’chuk, A.L. Lauk
|
Source |
Russian Journal of Electrochemistry
Volume: 53,
Issue: 6,
Pages: 670–676 Time of Publication: 2017 |
Abstract | The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte. |
Keywords | SOFC, magnetron sputtering, nanostructured electrode, thin-film anode, polarization resistance |
Remark | Link |
Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance
Authors |
J.A.Cebollero, R.Lahoz, M.A.Laguna-Bercero, A.Larrea
|
Source |
Journal of Power Sources
Volume: 360,
Pages: 336-344 Time of Publication: 2017 |
Abstract | Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface. |
Keywords | SOFC, Laser machining, Corrugated surface, Electrode polarisation, Cathode activation, Electrode/electrolyte interface |
Remark |
https://doi.org/10.1016/j.jpowsour.2017.05.106 Link |
Characterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells
Authors | |
Source |
International Journal of Hydrogen Energy
Time of Publication: 2017
|
Abstract | By laser machining we have prepared thin and self-supported yttria stabilized zirconia (YSZ) electrolytes that can be used in electrolyte-supported solid oxide fuel cells for reducing the operation temperature. The membranes, which are supported by thicker areas of the same material, have an active area of ∼20 μm in thickness and up to 8 mm in diameter. Buckling limits the maximum size of the thin areas to below 1 mm, the overall effective active area being formed by multiple thin areas bounded by ribs. Electron Backscattering Diffraction experiments determined that there are not significant strains inside the membranes and that the heat-affected zone is confined to a shallow layer of ∼1–2 μm. The bending strength of the membranes decreases by ∼26% as a result of the surface microcracking produced by the laser machining. The membranes have a roughness of ∼2.5 μm and are coated by a layer of nanoparticles produced by the laser ablation. This coating and small roughness is not detrimental for the cathodic polarization of the cells. Conversely, the cathode polarization resistance decreases ∼5% in the 650–850 °C temperature range. |
Keywords | SOFC; Solid electrolytes; Laser machining; Self-supporting ceramic membranes |
Remark |
http://dx.doi.org/10.1016/j.ijhydene.2016.12.112 Link |
Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC
Authors |
A.A. Solovyev, A.V. Shipilova, I.V. Ionov, A.N. Kovalchuk, S.V. Rabotkin, and V.O. Oskirko
|
Source |
Journal of Electronic Materials
Volume: 45,
Issue: 8,
Pages: 3921-3928 Time of Publication: 2016 |
Solid oxide fuel cell, CGO, YSZ, bilayer electrolyte, magnetron sputtering, pulse electron-beam treatment | |
Remark | Link |
Insights into the enhancement of oxygen mass transport properties of strontium-doped lanthanum manganite interface-dominated thin films
Authors | |
Source |
Solid State Ionics
Time of Publication: 2016
|
Abstract | Strontium-doped lanthanum manganite thin films were deposited by pulsed laser deposition on yttria-stabilized zirconia single crystals for a comprehensive electrochemical characterization of the material acting as a cathode. A physically-meaningful electrical model was employed to fit the electrochemical impedance spectroscopy results in order to extract the main oxygen mass transport parameters as a function of the temperature and oxygen partial pressure. The oxygen diffusion and surface exchange coefficients extracted from the analysis showed several orders of magnitude of enhancement with respect to the bulk values reported in the literature and an unexpectedly low dependence with the oxygen partial pressure. Different observations were combined to propose a mechanism for the enhanced incorporation of oxygen in interface-dominated thin films mainly based on the high concentration of oxygen vacancies expected in the grain boundaries. |
Remark |
http://dx.doi.org/10.1016/j.ssi.2016.08.009 Link |
Comparison of characteristics of solid oxide fuel cells with YSZ and CGO film solid electrolytes formed using magnetron sputtering technique
Authors |
A. A. Solov’ev, A. V. Shipilova, A. N. Koval’chuk, I. V. Ionov, S. V. Rabotkin
|
Source |
Russian Journal of Electrochemistry
Volume: 52,
Issue: 7,
Pages: 662–668 Time of Publication: 2016 |
Abstract | The work describes the methods of manufacturing single cells of solid oxide fuel cell (SOFC) with thin–film YSZ and CGO electrolytes and also with the bilayer YSZ/CGO electrolyte. Formation of YSZ and CGO films on the supporting NiO–YSZ anode of SOFC was carried out using the combined electron–ionic–plasma deposition technique. The microstructure and phase composition of the formed coatings are studied and also comparative analysis of electrochemical characteristics of single fuel cells with different electrolytes is performed. It is shown that the maximum power density of 1.35 W/cm2 at the temperature of 800°C is obtained for the cell with bilayer YSZ/CGO electrolyte. However, the highest performance at lower working temperatures (650–700°C) is characteristic for the fuel cell with single–layer CGO electrolyte; its power density is 600–650 mW/cm2. |
Keywords | Solid oxide fuel cell, CGO, YSZ, bilayer electrolyte, magnetron sputtering, pulsed electron–beam treatment |
Remark |
DOI: 10.1134/S102319351607017X Link |
Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia – nickel anodes for application in solid electrolyte fuel cells
Authors | |
Source |
Journal of Power Sources
Volume: 324,
Pages: 679–686 Time of Publication: 2016 |
Abstract | We report on the synthesis of undoped ∼5 μm YSZ-Ni porous thin films prepared by reactive pulsed DC magnetron sputtering at an oblique angle of incidence. Pre-calcination of the amorphous unmodified precursor layers followed by reduction produces a film consisting of uniformly distributed tilted columnar aggregates having extensive three-phase boundaries and favorable gas diffusion characteristics. Similarly prepared films doped with 1.2 at.% Au are also porous and contain highly dispersed gold present as Ni-Au alloy particles whose surfaces are strongly enriched with Au. With hydrogen as fuel, the performance of the undoped thin film anodes is comparable to that of 10–20 times thicker typical commercial anodes. With a 1:1 steam/carbon feed, the un-doped anode cell current rapidly falls to zero after 60 h. In striking contrast, the initial performance of the Au-doped anode is much higher and remains unaffected after 170 h. Under deliberately harsh conditions the performance of the Au-doped anodes decreases progressively, almost certainly due to carbon deposition. Even so, the cell maintains some activity after 3 days operation in dramatic contrast with the un-doped anode, which stops working after only three hours of use. The implications and possible practical application of these findings are discussed. |
Keywords | Magnetron sputtering; Oblique angle deposition; Thin film anodes; Carbon-tolerant; SOFC |
Remark |
doi:10.1016/j.jpowsour.2016.05.124 Link |
Thin film YSZ-based limiting current-type oxygen and humidity sensor on thermally oxidized silicon substrates
Author |
Shunsuke Akasaka
|
Source |
Sensors and Actuators B: Chemical
Volume: 236,
Pages: 499–505 Time of Publication: 2016 |
Abstract | In this paper, we propose a thin film yttria-stabilized-zirconia (YSZ)-based limiting current-type oxygen and humidity sensor. These sensors were fabricated from layers of thin films on thermally oxidized silicon substrates, with the intention of installing such sensors onto microheaters. Sputtered porous Pt cathode are situated beneath the YSZ films, and are designed to provide a gas diffusion layer as well as function as electrodes. The porous Pt layer exhibits good performance as a gas diffusion layer because of its small pore size. Optimized YSZ sputtering growth conditions result in in-plane densification without the presence of cracks. The temperature dependence of the oxygen sensor’s level of limiting current was T −0.5. This result was attributed to the shrinkage of the extremely small pores in the gas diffusion layer. Between 450 and 550 °C, following the application of a voltage of 1.1 V, the time response measurements show a rapid response of a few seconds. The oxygen concentration and water vapor pressure correspond to the level of the limiting current at 1.1 V and 1.8 V, respectively. |
Keywords | Yttria-stabilized-zirconia; Limiting current; Oxygen sensor; Humidity sensor; Thin film; Silicon substrate |
Remark |
doi:10.1016/j.snb.2016.06.025 Link |
Influence of cathode functional layer composition on electrochemical performance of solid oxide fuel cells
Authors | |
Source |
Journal of Solid State Electrochemistry
Time of Publication: 2016
|
Abstract | In this work, anode-supported solid oxide fuel cells (SOFC) were tested with a yttria-stabilized zirconia (YSZ) (8 mol% Y2O3-ZrO2)/gadolinium-doped ceria (GDC) (Ce0.9Gd 0.1O1.95) bilayer electrolyte and two lanthanum strontium cobalt ferrite (LSCF) composition as functional cathode layer: La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF 1) and La0.60Sr0.40Co0.2Fe0.8O3-δ (LSCF 2). The functional cathode layers were made of 50 % (w/w) LSCF and 50 % (w/w) GDC. Microstructural characterization was performed by scanning electron microscopy and X-ray diffraction. Electrochemical impedance spectroscopy (EIS) and power measurements were performed under oxygen and hydrogen atmospheres. The microscopy studies showed that the LSCF 2 functional layer is more uniform and adherent to the electrolyte and the cathode collector than the LSCF 1 functional layer, which has cracks, chips, and lower adhesion. The use of the LSCF 2 layer allowed an approximately 25-fold reduction in ohmic resistance (0.06 Ω cm−2) compared with the LSCF 1 layer (1.5 Ω cm−2). The power measurements showed a considerable increase in the power cell using LSCF 2 (approximately 420 mW cm−2) compared with the power cell using LSCF 1 (approximately 180 mW cm−2). |
Keywords | SOFC, LSCF, Interface, Electrochemical performance, Cathode, Functional layer |
Remark |
First Online: 20 May 2016. DOI: 10.1007/s10008-016-3241-4 Link |
Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC
Authors |
A. A. Solovyev , A. V. Shipilova, I. V. Ionov, A. N. Kovalchuk, S. V. Rabotkin, V. O. Oskirko
|
Source |
Journal of Electronic Materials
Time of Publication: 2016
|
Abstract | Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm−2 and 500 mW cm−2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm−2 at 800°C and 1 W cm−2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte. |
Keywords | Solid oxide fuel cell CGO YSZ bilayer electrolyte magnetron sputtering pulse electron-beam treatment |
Remark | Link |
Electrochemical Promotion of Ir0.5Pt0.5O2/YSZ
Authors |
S. Balomenou, K. M. Papazisi, D. Tsiplakides
|
Source |
Topics in Catalysis
Volume: 58,
Issue: 18,
Pages: 1270-1275 Time of Publication: 2015 |
Abstract | A high surface area, nanostructured bimetallic oxide catalyst, Ir0.5Pt0.5O2, deposited on YSZ was studied for the electrochemical promotion of ethylene oxidation. The catalyst was synthesized using the modified Adams fusion method and was characterized regarding its structure, morphology and specific surface area via XPS, XRD, HRTEM, SEM and BET. Regarding the performance for electrochemical promotion, it was found that the rate of ethylene oxidation can be enhanced significantly and in a strongly non-faradaic manner via positive potential application, exhibiting strongly electrophobic behaviour. |
Keywords | Electrochemical promotion, EPOC, Ir0.5Pt0.5O2, Adams fusion method |
Remark | Link |
Enhanced Carbon Deposition Tolerance of SOFC Anodes Under Triode Operation
Authors |
Ioanna Petrakopoulou, Dimitrios Tsiplakides, Stella Balomenou
|
Source |
Topics in Catalysis
Volume: 58,
Issue: 18,
Pages: 1303-1310 Time of Publication: 2015 |
Abstract | The triode fuel cell design and operation concept was applied as an alternative means for controlling and enhancing the carbon tolerance of state-of-the-art solid oxide fuel cell (SOFC) anodes. The triode cell configuration entails the introduction of a third electrode in addition to the anode and cathode, driven by an auxiliary circuit which is run in electrolytic mode. In this way the cell is forced to operate at controlled potential differences that are inaccessible under standard operation, and thus introduces a controllable variable into fuel cell operation. In the present study, the effectiveness of the triode approach was evaluated for the in situ control of the rate of carbon deposition in commercial multilayer NiO–GDC and NiO–YSZ SOFC anodes. The study involved typical and triode operation of SOFC button cells under CH4 steam reforming conditions, and it was found that the application of a small electrolytic current under triode operation resulted in significantly less carbon built-up on the anode compared to the standard SOFC operation. |
Keywords | SOFC Triode fuel cell operation, Anode degradation, Carbon formation, CH4 steam reforming |
Remark | Link |
Development of a Coking-Resistant NiSn Anode for the Direct Methane SOFC
Authors |
N. Bogolowski, B. Iwanschitz and J.-F. Drillet
|
Source |
Fuel Cells
Volume: 15,
Issue: 5,
Pages: 711–717 |
Abstract | The present work reports on the development of a coking-resistant NiSn-based membrane electrode assembly (MEA) for internal CH4 reforming in solid oxide fuel cells (SOFCs). Catalyst powder was prepared in a centrifugal casting oven by melting stoichiometric amounts of Ni and Sn under vacuum. The formation of Ni3Sn2 intermetallic phase was confirmed by XRD analysis. Catalytic activity for CH4 reforming and stability of the NiSn powder were first evaluated in a quartz glass reactor for 4 h at 600–1,000 °C. The main reaction products H2 and CO were detected by gas chromatography while no carbon formation was detected during the experiments. Then, 3YSZ electrolyte-supported MEAs were fabricated with a Ni3Sn2/YSZ anode and LSM/YSZ cathode and characterized under SOFC conditions. The MEA showed an excellent stability under CH4 atmosphere (3% H2O) at 850 °C over more than 650 h. No substantial decrease in cell potential was observed during this period. |
Keywords | Anode Material;Intermetallic Phase;Internal Reforming;Methane;Nickel-Tin Alloy;Ni3Sn2;SOFC;Solid Oxide Fuel Cell |
Remark |
DOI: 10.1002/fuce.201400187 Link |
Bi1−xNbxO1.5+x (x=0.0625, 0.12) fast ion conductors: Structures, stability and oxide ion migration pathways
Authors |
Matthew L. Tate, Jennifer Hack, Xiaojun Kuang, Garry J. McIntyre, Ray L. Withers, Mark R. Johnson, Ivana Radosavljevic Evans
|
Source |
Journal of Solid State Chemistry
Volume: 225,
Pages: 383–390 Time of Publication: 2015 |
Abstract | A combined experimental and computational study of Bi1−xNbxO1.5+x (x=0.0625 and 0.12) has been carried out using laboratory X-ray, neutron and electron diffraction, impedance measurements and ab-initio molecular dynamics. We demonstrate that Bi0.9375Nb0.0625O1.5625, previously reported to adopt a cubic fluorite-type superstructure, can form two different polymorphs depending on the synthetic method: a metastable cubic phase is produced by quenching; while slower cooling yields a stable material with a tetragonal √2×√2×1 superstructure, which undergoes a reversible phase transition into the cubic form at ~680 °C on subsequent reheating. Neutron diffraction reveals that the tetragonal superstructure arises mainly from ordering in the oxygen sublattice, with Bi and Nb remaining disordered, although structured diffuse scattering observed in the electron diffraction patterns suggests a degree of short-range ordering. Both materials are oxide ion conductors. On thermal cycling, Bi0.88Nb0.12O1.62 exhibits a decrease in conductivity of approximately an order of magnitude due to partial transformation into the tetragonal phase, but still exhibits conductivity comparable to yttria-stabilised zirconia (YSZ). Ab-initio molecular dynamics simulations performed on Bi0.9375Nb0.0625O1.5625 show that oxide ion diffusion occurs by O2− jumps between edge- and corner-sharing OM4 groups (M=Bi, Nb) via tetrahedral □M4 and octahedral □M6 vacancies. |
Keywords | Functional oxides; Fast ion conductors; Complex superstructures |
Remark |
doi:10.1016/j.jssc.2015.01.006 Link |
Magnetron formation of Ni/YSZ anodes of solid oxide fuel cells
Authors |
A. A. Solov’ev, N. S. Sochugov, I. V. Ionov, A. V. Shipilova, A. N. Koval’chuk
|
Source |
Russian Journal of Electrochemistry
Volume: 50,
Issue: 7,
Pages: 647-655 Time of Publication: 2014 |
Abstract | Physico-chemical and structural properties of nanocomposite NiO/ZrO2:Y2O3 (NiO/YSZ) films applied using the reactive magnetron deposition technique are studied for application as anodes of solid oxide fuel cells. The effect of oxygen consumption and magnetron power on the discharge parameters is determined to find the optimum conditions of reactive deposition. The conditions for deposition of NiO/YSZ films, under which the deposition rate is maximum (12 μm/h), are found and the volume content of Ni is within the range of 40–50%. Ni-YSZ films reduced in a hydrogen atmosphere at the temperature of 800°C have a nanoporous structure. However, massive nickel agglomerates are formed in the course of reduction on the film surface; their amount grows at an increase in Ni content in the film. Solid oxide fuel cells with YSZ supporting electrolyte and a LaSrMnO3 cathode are manufactured to study electrochemical properties of NiO/YSZ films. It is shown that fuel cells with a nanocomposite NiO/YSZ anode applied using a magnetron sputtering technique have the maximum power density twice higher than in the case of fuel cells with an anode formed using the high-temperature sintering technique owing to a more developed gas-anode-electrolyte three-phase boundary. |
Remark | Link |
Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures
Authors | |
Source |
Energy Environ. Sci.
Time of Publication: 2014
|
Abstract | Batteries, with a limited capacity, have dominated the power supply of portable devices for decades. Recently, the emergence of new types of highly efficient miniaturized power generators like micro fuel cells has opened up alternatives for continuous operation on the basis of unlimited fuel feeding. This work addresses for the first time the development of a full ceramic micro solid oxide fuel cell fabricated in silicon technology. This full-ceramic device represents a new generation of miniaturized power generators able to operate at high temperatures, and therefore able to work with a hydrocarbon fuel supply. Dense yttria-stabilized zirconia free-standing large-area membranes on micromachined silicon were used as the electrolyte. Thin-film porous electrodes of La0.6Sr0.4CoO3−δ and gadolinia-doped ceria were employed as cathode and anode materials, respectively. The electrochemical performance of all the components was evaluated by partial characterization using symmetrical cells, yielding excellent performance for the electrolyte (area specific resistance of 0.15 Ω cm2 at temperatures as low as 450 °C) and the electrodes (area specific resistance of the cathode and anode below 0.3 Ω cm2 at 700 °C). A micro solid oxide fuel cell with an active area of 2 mm2 and less than 1 micrometer in thickness was characterized under fuel cell conditions, using hydrogen as a fuel and air as an oxidant. A maximum power density of 100 mW cm−2 and 2 mW per single membrane was generated at 750 °C, having an open circuit voltage of 1.05 V. Impedance spectroscopy of the all-ceramic membrane showed a total area-specific resistance of [similar]3.5 Ω cm2. |
Remark |
DOI: 10.1039/C4EE00748D Link |
Mesoporous NiO-Samaria Doped Ceria for Low-Temperature Solid Oxide Fuel Cells
Authors |
Kim, Jin-Yeop; Kim, Ji Hyeon; Choi, Hyung Wook; Kim, Kyung Hwan; Park, Sang Joon
|
Source |
Journal of Nanoscience and Nanotechnology
Volume: 14,
Issue: 8,
Pages: 6399-6403(5) Time of Publication: 2014 |
Abstract | In order to prepare anode material for low-temperature solid oxide fuel cells (SOFCs), the mesoporous NiO-SDC was synthesized using a cationic surfactant (cetyltrimethyl-ammonium bromide; CTAB) for obtaining wide triple-phase boundary (TPB). In addition, Ni-SDC anode-supported SOFC single cells with YSZ electrolyte and LSM cathode were fabricated and the performance of single cells was evaluated at 600 °C. The microstructure of NiO-SDC was characterized by XRD, EDX, SEM, and BET, and the results showed that the mesoporous NiO-SDC with 10 nm pores could be obtained. It was found that the surface area and the electrical performance were strongly influenced by the Ni content in Ni-SDC cermets. After calcined at 600 °C, the surface area of NiO-SDC was between 90–117 m2/g at 35–45 Ni wt%, which was sufficiently high for providing large TPB in SOFC anode. The optimum Ni content for cell performance was around 45 wt% and the corresponding MPD was 0.36 W/cm2. Indeed, the mesoporous NiO-SDC cermet may be of interest for use as an anode for low-temperature SOFCs. |
Remark |
DOI: http://dx.doi.org/10.1166/jnn.2014.8452 Link |
Application of PVD methods to solid oxide fuel cells
Authors |
A.A. Solovyeva, N.S. Sochugov, S.V. Rabotkin, A.V. Shipilova, I.V. Ionov, A.N. Kovalchuk, A.O. Borduleva
|
Source |
Applied Surface Science
Time of Publication: 2014
|
Abstract | In this paper, attention is paid to the application of such a method of vacuum physical vapor deposition (PVD) as magnetron sputtering for fabrication of a solid oxide fuel cell (SOFC) materials and structures. It is shown that the YSZ (yttria-stabilized zirconia) electrolyte and Ni–YSZ anode layers with required thickness, structure and composition can be effectively formed by PVD methods. The influence of parameters of pulsed power magnetron discharge on the deposition rate and the microstructure of the obtained YSZ electrolyte films were investigated. It is shown that the deposition rate of the oxide layers by magnetron sputtering can be significantly increased by using asymmetric bipolar power magnetrons, which creates serious prerequisites for applying this method on the industrial scale. Porous Ni–YSZ anode films were obtained by reactive co-sputtering of Ni and Zr–Y targets and subsequent reduction in the H2 atmosphere at a temperature of 800 °C. The Ni–YSZ films comprised small grains and pores of tens of nanometers. |
Keywords | Solid oxide fuel cell; Metal support; Magnetron sputtering; Thin film; YSZ electrolyte; NiO/YSZ anode |
Remark |
http://dx.doi.org/10.1016/j.apsusc.2014.03.163 Link |
Porous La 0.6 Sr 0.4 CoO 3-δ thin film cathodes for large area micro solid oxide fuel cell MEMS power generators
Authors | |
Source |
Journal of Power Sources
Time of Publication: 2013
|
Abstract | Porous La0.6Sr0.4CoO3-δ thin films were fabricated by pulsed laser deposition for being used as a cathode for micro solid oxide fuel cell applications as MEMS power generators. Symmetrical La0.6Sr0.4CoO3-δ/yttria-stabilized zirconia/La0.6Sr0.4CoO3-δ free-standing membranes were fabricated using silicon as a substrate. A novel large-area membrane design based on grids of doped-silicon slabs. Thermo-mechanical stability of the tri-layer membranes was ensured in the intermediate range of temperatures up to 700°C. In-plane conductivity of ca. 300 S/cm was measured for the cathode within the whole range of application temperatures. Finally, area specific resistance values below 0.3 Ω·cm2 were measured for the cathode/electrolyte bi-layer at 700°C in the exact final micro solid oxide fuel cell device configuration, thus presenting La0.6Sr0.4CoO3-δ as a good alternative for fabricating reliable micro solid oxide fuel cells for intermediate temperature applications. |
Keywords | Micro Solid Oxide Fuel Cell, thin film cathode, self-supported electrolyte |
Remark |
DOI: 10.1016/j.jpowsour.2013.10.038 |
Galliosilicate glasses for viscous sealants in solid oxide fuel cell stacks: Part III: Behavior in air and humidified hydrogen
Authors |
T. Jin, M.O. Naylor, J.E. Shelby, S.T. Misture
|
Source |
International Journal of Hydrogen Energy
Time of Publication: 2013
|
Abstract | Optimized boro-galliosilicate glasses were selected to evaluate their viscous sealing performance in both air and humidified hydrogen atmospheres. Selected low-alkali and alkali-free glasses show excellent performance, with viscous behavior maintained for more than 1000 h in wet hydrogen. Candidate sealants were thermally treated at 850 and 750 °C for up to 1000 h in contact with alumina coated 441 stainless steel (Al-SS) and 8 mol% yttria-stabilized zirconia (8YSZ). Each sealant crystallizes appreciably by 1000 h, and their coefficients of thermal expansion range from 10.2 to 11.7 × 10−6 K−1, 100–400 °C. The remnant amorphous phases in most of the partially crystallized sealants show softening points near or below the target operating temperatures, thus enabling viscous sealing. Humidified hydrogen in general increases the rate of crystallization but does not change the crystalline phases formed or interactions with 8YSZ. For the low-alkali GaBA series, wet H2 enhances the interfacial interaction between potassium in the glass phase and the protective alumina coating on the stainless steel. |
Keywords | Solid oxide fuel cell; Sealing glass; Galliosilicate; Thermal expansion; Hydrogen |
Remark |
Available online 25 October 2013 Link |
Porous La0.6Sr0.4CoO3-δ thin film cathodes for large area micro solid oxide fuel cell MEMS power generators
Authors | |
Source |
Journal of Power Sources
Time of Publication: 2013
|
Abstract | Porous La0.6Sr0.4CoO3-δ thin films were fabricated by pulsed laser deposition for being used as a cathode for micro solid oxide fuel cell applications as MEMS power generators. Symmetrical La0.6Sr0.4CoO3-δ/yttria-stabilized zirconia/La0.6Sr0.4CoO3-δ free-standing membranes were fabricated using silicon as a substrate. A novel large-area membrane design based on grids of doped-silicon slabs. Thermo-mechanical stability of the tri-layer membranes was ensured in the intermediate range of temperatures up to 700°C. In-plane conductivity of ca. 300 S/cm was measured for the cathode within the whole range of application temperatures. Finally, area specific resistance values below 0.3 Ω·cm2 were measured for the cathode/electrolyte bi-layer at 700°C in the exact final micro solid oxide fuel cell device configuration, thus presenting La0.6Sr0.4CoO3-δ as a good alternative for fabricating reliable micro solid oxide fuel cells for intermediate temperature applications. |
Remark |
Available online 18 October 2013 Link |
Effect of Steam-to-Carbon Ratio on Degradation of Ni-YSZ Anode Supported Cells
Authors |
Hossein Madi, Stefan Diethelm, Jan Van herle and Nathalie Petigny
|
Source |
ECS Transaction
Volume: 57,
Issue: 1,
Pages: 1517-1525 Time of Publication: 2013 |
Abstract | Internal steam reforming (IR) of methane was investigated on Ni-YSZ anode supported cells, looking in particular at the effect of the steam to carbon (S/C) ratio on the degradation rate. The cells were fed with different H2O/CH4 mixtures during 100 hours sequences, alternating with sequences of dry H2 feeding. V-I characterization was performed before and after each sequence, and EIS measurements were performed regularly. A marked degradation was observed during the IR sequences while it was negligible under dry H2 feed. The observed degradation, attributed to carbon deposition on the anode active sites, was partially reversible for S/C >1.5, whereas it became irreversible at lower S/C. |
Remark | Link |
Effects of Nb5+, Mo6+, and W6+ dopants on the germanate-based apatites as electrolyte for use in solid oxide fuel cells
Authors |
Sea-Fue Wang, Yung-Fu Hsu, Wan-Ju Lin
|
Source |
International Journal of Hydrogen Energy
Volume: 38,
Issue: 27,
Pages: 12015–12023 Time of Publication: 2013-09 |
Abstract | Rare information is available in the literature on the cell performance of the solid oxide fuel cells (SOFCs) using apatites known for their good electrical conductivity as electrolyte materials. In this study, La9.5Ge5.5Nb0.5O26.5, La9.5Ge5.5Mo0.5O26.75, and La9.5Ge5.5W0.5O26.75 ceramics were prepared and characterized. The results indicated that the La9.5Ge5.5Nb0.5O26.5 and La9.5Ge5.5W0.5O26.75 ceramics reported hexagonal phase, while the La9.5Ge5.5Mo0.5O26.75 ceramic demonstrated triclinic symmetry. Among the apatities evaluated, La9.5Ge5.5Nb0.5O26.5 sintered at 1450 °C showed the best conduction with an electrical conductivity value of 0.045 S/cm at 800 °C. Button cells of NiO–SDC/La9.5Ge5.5Nb0.5O26.5/LSCF–SDC were built and revealed good structural integrity. The total ohmic resistance (R0) and interfacial polarization resistance (RP) of the cell read 0.428 and 0.174 Ω cm2 and 0.871 and 1.164 Ω cm2, respectively at 950 and 800 °C. The maximum power densities (MPD) of the single cell at 950 and 800 °C were respectively 0.363 and 0.095 W cm−2. Without optimizing the anode and cathode as well as hermetic sealing of the cell against the gas, the study found the performance of the single cell with the pure La9.5Ge5.5Nb0.5O26.5 as its electrolyte material superior to those of the SOFC cells with a YSZ electrolyte of comparable thickness shown in the literature. |
Keywords | Solid oxide fuel cell; Apatite; Impedance; Cell performance |
Remark | Link |
CO2 decomposition via oxygen deficient ferrite electrodes using solid oxide electrolyser cell
Source |
Time of Publication: 2012-09
|
Abstract | Oxygen Deficient Ferrites (ODF) electrodes integrated with Yttria Stabilized Zirconia (YSZ) electrolyte, electrochemically decompose carbon dioxide (CO2) into carbon (C)/carbon monoxide (CO) and oxygen (O2) in a continuous process. The ODF electrodes can be kept active by applying a small potential bias across the electrodes. CO2 and water (H2O) can also be electrolyzed simultaneously to produce syngas (H2+CO) and O2 continuously that can be fed back to the oxy-fuel combustion. With this approach, CO2 can be transformed into a valuable fuel source allowing CO2 neutral use of the hydrocarbon fuels. |
Remark |
United States Patent Application 20120228150 Link |
A novel coulometric titration setup—Principals, design and leakage minimization
Authors | |
Source |
Thermochimica Acta
Time of Publication: 2012-05
|
Abstract | This article presents a new coulometric titration setup and describes the principles of operation, the main precautions to be taken into account to reduce the systematic errors, and evaluates the working range and the accuracy of the measurements. The major source of error, the oxygen leakage, is studied in detail and modeled based on leakage of oxygen through the YSZ solid electrolyte. Decreasing the difference in chemical potential of oxygen between inside and outside of the cell is studied as an applied measure to decrease the oxygen leakage. Flushing the pumping solid electrolyte by N2 shows a reasonable improvement. Eventually, oxygen non-stoichiometry of SrFeO3−δ is measured at 1273 K in the oxygen partial pressure range of 0.6 < −log(pO2/atm) < 12. The resulting values are in good agreement with the literature. |
Keywords | Coulometric titration; Oxygen non-stoichiometry; Oxygen leakage |
Polymorphism and Oxide Ion Migration Pathways in Fluorite-Type Bismuth Vanadate, Bi46V8O89
Authors |
Xiaojun Kuang, Julia L. Payne, James D. Farrell, Mark R. Johnson, and Ivana Radosavljevic Evans
|
Source |
Chem. Mater.
Volume: 24,
Issue: 11,
Pages: 2162–2167 Time of Publication: 2012-05 |
Abstract | We report the synthesis, structural characterization, and ionic conductivity measurements for a new polymorph of bismuth vanadate Bi46V8O89, and an ab initio molecular dynamics study of this oxide ion conductor. Structure determination was carried out using synchrotron powder X-ray and neutron diffraction data; it was found that β-Bi46V8O89 crystallizes in space group C2/m and that the key differences between this and the previously reported α-form are the distribution of Bi and V cations and the arrangement of the VO4 coordination polyhedra in structure. β-Bi46V8O89 exhibits good oxide ion conductivity, with σ = 0.01–0.1 S/cm between 600 and 850 °C, which is about an order of magnitude higher than yttria stabilized zirconia. The ab initio molecular dynamics simulations suggest that the ion migration pathways include vacancy diffusion through the Bi–O sublattice, as well as the O2– exchanges between the Bi–O and the V–O sublattices, facilitated by the variability of the vanadium coordination environment and the rotational freedom of the VOx coordination polyhedra. |
Keywords | Oxide ion conductors; bismuth vanadates; X-ray and neutron diffraction; AIMD simulations |
Remark |
Publication Date (Web): May 3, 2012 Link |
Fabrication and electrochemical properties of cathode-supported solid oxide fuel cells via slurry spin coating
Authors |
Min Chen, Jing-Li Luo, Karl T. Chuang, Alan R. Sanger
|
Source |
Electrochimica Acta
Volume: 63,
Pages: 277–286 Time of Publication: 2012-02 |
Abstract | A cathode-supported SOFC consisting of LSM (La0.8Sr0.2MnO3-δ) cathode supporter, LSM-Sm0.2Ce0.8O2-δ (SDC) cathode functional layer (CFL), yttria stabilized zirconia (YSZ)/SDC bi-layered electrolyte and Ni-YSZ anode layer was fabricated by a slurry spin coating technique. The influence of the porosity in both the CFL and cathode supporter on the electrochemical properties of the cells has been investigated. It was found that properly controlling the porosity in the CFL would improve the performance of the cells using O2 in the cathode side (O2-cells), with a maximum power density (MPD) value achieving as high as 0.58 W•cm−2 at 850 °C. However, this improvement is not so evident for the cells using air in the cathode side (air-cells). When increasing the porosity in the cathode-supporter, a significant increase of the power density for the air cells due to the decreasing Rconc,c(concentration polarization to the cell resistance) can be ascertained. In terms of our analysis on various electrochemical parameters, the Ract (activation polarization to the cell resistance) is assumed to be mainly responsible for the impedance arcs measured under the OCV condition, with a negligible Rconc,cvalue being able to be detected in our impedances. In this case, a significant decreasing size of the impedance arcs due to the increasing porosity in the cathode supporter would correspond to a decrease of the Ract values, which was proved to be induced by the decreasingRconc,c. |
Keywords | Slurry spin coating; Cathode-supported SOFC; Concentration polarization; Activation polarization; Power density |
Remark | Link |
Evaluation of the electrode/electrolyte contact quality in solid oxide fuel cells
Authors |
Jacqueline Amanda Figueiredo dos Santos, Michel Kleitz, Tulio Matencio, Rosana Zacarias Domingues
|
Source |
Electrochimica Acta
Volume: 60,
Pages: 224–229 Time of Publication: 2012-01 |
Abstract | Symmetrical cells have been prepared by depositing suspensions with different active powder concentrations (50% and 60% by weight respectively) of lanthanum strontium cobalt iron oxide (La0.6Sr0.4Co0.2Fe0.8O3-δ) on identical yttria stabilized zirconia pellets (LSCF/YSZ/LSCF). Their impedance characteristics are compared to that of a symmetrical cell with platinum electrodes deposited on a similar zirconia pellet (Pt/YSZ/Pt). The LSCF cells show different values of the electrolyte resistance. Referring to the electrolyte resistance obtained with the Pt cell and assuming that this value corresponds to almost perfect electrode/electrolyte contacts, it is possible to estimate the Effective Conducting Area (ECA) of the electrodes. The use of the ECA parameter allows a better comparison of the electrode polarizations. |
Keywords | solid oxide fuel cells; porous electrodes; cathode |
Remark | Link |
Effect of nano-grain size on the ionic conductivity of spark plasma sintered 8YSZ electrolyte
Authors |
K. Rajeswari, M. Buchi Suresh, Dibyendu Chakravarty, Dibakar Das, Roy Johnson
|
Source |
International Journal of Hydrogen Energy
Volume: 37,
Issue: 1,
Pages: 511–517 Time of Publication: 2012-01 |
Abstract | Densification and micro-structural development of ultra fine 8 mol% yttria stabilized zirconia (8YSZ) nano powder were investigated systematically by varying the SPS sintering temperature at constant applied pressure of 50 MPa. A hundred fold decrease in average grain size ranging from 10 μm to 80 nm is observed on decreasing the SPS sintering temperature from 1200 °C to 1050 °C with >99% of theoretical densities. Impedance measurements on the samples indicated an enhancement in the ionic conductivity at 700 °C from 0.004 S/cm to 0.018 S/cm with decrease in grain size from 10 μm to 0.51 μm and a significant increase in conductivity from 0.018 S/cm to 0.068 S/cm on further reduction of grain size to 80 nm. A significant change in the grain-boundary conductivity is noticed on reducing the grain sizes to nano regime. The diverse microstructure with ultra fine grain size resulting from SPS at 1050 °C could contribute to the enhanced ionic conductivity, which is supported by the activation energy data. |
Keywords | Solid oxide fuel cells; Electrolyte; Microstructure; Spark plasma sintering |
Remark | Link |
An ion-plasma technique for formation of anode-supported thin electrolyte films for IT-SOFC applications
Authors |
N.S. Sochugov, A.A. Soloviev, A.V. Shipilova, V.P. Rotshtein
|
Source |
International Journal of Hydrogen Energy
Volume: 36,
Issue: 9,
Pages: 5550-5556 Time of Publication: 2011-05 |
Abstract | This paper describes a preparation method and structural and electrochemical properties of a thin bilayer anode-electrolyte structure for a solid oxide fuel cell operating at intermediate temperatures (IT-SOFC). Thin anode-supported yttria-stabilized zirconia electrolyte films were prepared by reactive magnetron sputtering of a Zr–Y target in an Ar–O2 atmosphere. Porous anode surfaces of IT-SOFCs were modified by a pulsed low-energy high-current electron beam prior to film deposition; the influence of this pretreatment on the performance of both the deposited films and a single cell was investigated. The optimal conditions of the pulsed electron beam pretreatment were obtained. For the electrolyte thickness about 2.5 μm and the value of gas permeability of the anode/electrolyte structure 1.01 × 10−7 mol m−2 s−1 Pa−1, the maximum power density achieved for a single cell at 800 °C and 650 °C was found to be 620 and 220 mW cm−2 in air, respectively. |
Keywords | Solid oxide fuel cell; YSZ electrolyte; Magnetron sputtering; Surface modification of material; Pulsed electron beam treatment; Electrical performance |
Fabrication and Characterization of Anode-Supported BaIn0.3Ti0.7O2.85 Thin Electrolyte for Solid Oxide Fuel Cell
Authors |
M. Rieu, P. K. Patro, T. Delahaye*, E. Bouyer
|
Source |
International Journal of Applied Ceramic Technology
Article first published online: 28 MAR 2011 Time of Publication: 2011-03 |
Abstract | BaIn0.3Ti0.7O2.85 (BIT07) is a promising electrolyte for solid oxide fuel cells, due to its chemical compatibility with most of the cathode electrode material such as LSM and Ln2NiO4. The present work is aimed on the fabrication of anode-supported half cells with thin BIT07 electrolyte. For this, Ni-8YSZ cermet was chosen due to its excellent mechanical and electrochemical properties, in addition to its low cost. The NiO–8YSZ anode support was prepared by tape casting, and for this, an organic slurry formulation was optimized. The BIT07 electrolyte thin film was deposited through screen printing on the green anode. The formulation of the ink was optimized, and sintering at 1350°C for 3 h led to a dense electrolyte with controlled thickness varying from 2 to 12 μm. Further, the cermet electrode still had a homogeneous microstructure with well-defined anode/electrolyte interface. The electrode ASR was about 0.5 Ω cm2 and was stable over 500 h at 800°C under H2–3% H2O. The fabrications of half cells were successfully scaled up to 100 mm × 100 mm retaining the dimensional control and without any surface defects. |
Yttria-stabilized zirconia thin film electrolyte produced by RF sputtering for solid oxide fuel cell applications
Authors |
Federico Smeacetto, Milena Salvo, Lakshmi Chandru Ajitdoss, Sergio Perero, Tomasz Moskalewicz, Stefano Boldrini, Lioudmila Doubova and Monica Ferraris
|
Source |
Materials Letters
Volume: 64,
Issue: 22,
Pages: 2450-2453 Time of Publication: 2010-11 |
Abstract | Thin film (40–600 nm) yttria-stabilized zirconia (YSZ) electrolytes for solid oxide fuel cells (SOFC) were deposited on NiO-YSZ anodes and fused silica substrates by RF sputtering, using low applied power without the use of post deposition annealing heat treatment. YSZ film showed a nanocrystalline structure and consisted of the Zr.85Y.15O1.93 (fcc) phase. The film was dense and the YSZ/anode interface was continuous and crack free. According to preliminary in-plane conductivity measurements (temperature range 550–750 °C) on the YSZ film, the activation energy for ionic conduction was found to be 1.18 ± 0.01 eV. |
Keywords | Thin films; Ceramics; Microstructure; Nanomaterials |
Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell
Authors |
Stefan Diethelm, Jan Van Herle
|
Source |
Journal of Power Sources
Volume: 196,
Issue: 17,
Pages: 7355–7362 Time of Publication: 2011-09 |
Abstract | This study investigates the performance of a standard Ni–YSZ anode supported cell under ethanolsteamreforming operating conditions. Therefore, the fuelcell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H2, CO) in the fuelcell. The electrochemical properties of the fuelcell fed with four different fuel compositions were characterized between 710 and 860 °C by I–V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency. Results show that internalsteamreforming of ethanol takes place significantly on Ni–YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water–gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C. |
Keywords | SOFC; Ni–YSZ anode; Ethanol; Internal reforming; Coking; Impedance spectroscopy |
Remark | Link |
Characterization of porous lanthanum strontium manganite (LSM) and development of yttria stabilized zirconia (YSZ) coating
Authors |
A.K. Sahu, A. Ghosh and A.K. Suri
|
Source |
Ceramics International
Volume: 35,
Issue: 6,
Pages: 2493-2497 Time of Publication: 2009 |
Synthesis and characterization of nanocrystalline Ni–YSZ cermet anode for SOFC
Author |
T. Priyatham and Ranjit Bauri
|
Source |
Materials Characterization
Volume: 61,
Issue: 1,
Pages: 54-58 Time of Publication: 2010-01 |
Abstract | Ni–YSZ cermet anode has been synthesized in one step using a simple and cost effective combustion synthesis process. The processed powder of NiO–YSZ is found to be nanocrystalline with crystallite sizes of 29 and 22 nm for NiO and YSZ respectively by X-ray diffraction and transmission electron microscopy analysis. X-ray diffraction analysis also shows that the precursor salts are converted to highly crystalline phases of NiO and YSZ (8 mol% Y2O3) without any intermediate calcination step and no undesirable phases are present. Comparison with the X-ray diffraction pattern of a commercial YSZ sample shows that the process is also effective in maintaining a close compositional control. The microstructure of the sintered and reduced sample shows a well defined network of pores which is necessary for the effective functioning of the anode. The electrical conductivity as a function of temperature shows metallic behavior. |
Keywords | Ni–YSZ anode; Combustion synthesis; Nanocrystalline cermet; Microstructure |
Plasma sprayed metal supported YSZ/Ni–LSGM–LSCF ITSOFC with nanostructured anode
Authors |
Hwang, C., Tsai, C.H., Lo, C.H., Sun, C.H.
|
Source |
Journal of Power Sources, 180 (1),
Pages: p.132-142 Time of Publication: 2008 |
Electrochemical behaviour of Ni/YSZ electrodes
Author |
T. Norby
|
Source |
Proc. 2nd European SOFC Forum
Volume: May 1996 ,
Pages: 607-616 Time of Publication: 1996 |
Editor |
B. Thorstensen
|
Remark |
Disk samples, 3 electrodes (Working, counter, ring reference) |
Hydrogen isotope effects on Ni/YSZ electrodes
Authors |
T. Norby, P. Kofstad
|
Source |
Risø Natl. Lab., Roskilde, Denmark (1996) Pages: 381-386 Time of Publication: 1996 |
Editors |
F.W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen and B. Zachau-Christiansen
|
Remark |
Disk samples, 3 electrodes (Working, counter, ring reference) |
Ageing of YSZ electrolytes at 800°C
Authors | |
Source |
Proc. 2nd European SOFC Forum
Volume: May 1996,
Pages: 315-320 Time of Publication: 1996 |
Editor |
B. Thorstensen
|
Remark |
Disk samples, 4 stacked and measured simultaneously, with Pt electrodes in-between. |
Oxidation of methane on a SrFeO3/Au//YSZ electrode characterised by mass spectroscopy and 18O2 pulses
Authors |
T. Norby, H. Middleton, E.W. Hansen, I. Dahl, A.G. Andersen
|
Source |
Chem. Eng. Technol.
Volume: 18,
Pages: 139-147 Time of Publication: 1995 |
Remark |
Disk samples, sealed onto support, with electrodes for electrochemical pumping. Exctract to MS directly from electrodes by silica tubes. |
Ageing of YSZ electrolytes at 1000°C
Authors | |
Source |
Proc. 1st European SOFC Forum
Volume: Oct. 1994,
Pages: 671-679 Time of Publication: 1994 |
Editor |
U. Bossel
|
Remark |
Disk samples, 4 stacked and measured simultaneously over 40 days, with Pt electrodes in-between |
Oxidation of CH4 on La0.7Ca0.3CrO3//YSZ anodes
Authors |
T. Norby, R. Hildrum, M. Seiersten, R. Glenne, P.A. Osborg and O. Dyrlie
|
Source |
Proc. 1st European SOFC Forum
Volume: Oct. 1994,
Pages: 217-226 Time of Publication: 1994 |
Editor |
U. Bossel
|
Remark |
Disk samples, sealed by glass onto support, fuel cell and electrochemical pumping modes, MS analysis of gases. |
Electrical conductivity and ionic transport number of YSZ and Cr-doped YSZ single crystals at 200-1000°C
Authors | |
Source |
Solid State Ionics
Volume: 67,
Pages: 57-64 Time of Publication: 1993 |
Remark |
Small single crystals, Pt paint electrodes, placed over small hole in support plate to form concentration cell. Role of sample holder parasitic conductance evaluated. |
Reaction resistance in relation to three phase boundary length of Ni/YSZ electrodes
Authors |
T. Norby, O.J. Velle, H. Leth-Olsen, R. Tunold, S.C. Singhal, H. Iwahara, eds.
|
Source |
Electrochem. Soc. Proc.
Volume: 93-4,
Pages: 473-477 Time of Publication: 1993 |
Remark |
Disk sample, 3-electrode setup, patterned working electrode |